BenAbdennour Adel
College of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Biomimetics (Basel). 2025 Apr 3;10(4):222. doi: 10.3390/biomimetics10040222.
This paper introduces the Enhanced Team-Oriented Swarm Optimization (ETOSO) algorithm, a novel refinement of the Team-Oriented Swarm Optimization (TOSO) algorithm aimed at addressing the stagnation problem commonly encountered in nature-inspired optimization approaches. ETOSO enhances TOSO by integrating innovative strategies for exploration and exploitation, resulting in a simplified algorithm that demonstrates superior performance across a broad spectrum of benchmark functions, particularly in high-dimensional search spaces. A comprehensive comparative evaluation and statistical tests against 26 established nature-inspired optimization algorithms (NIOAs) across 15 benchmark functions and dimensions (D = 2, 5, 10, 30, 50, 100, 200) confirm ETOSO's superiority relative to solution accuracy, convergence speed, computational complexity, and consistency.
本文介绍了增强型面向团队的群体优化(ETOSO)算法,它是面向团队的群体优化(TOSO)算法的一种新颖改进,旨在解决自然启发式优化方法中常见的停滞问题。ETOSO通过集成探索和利用的创新策略来增强TOSO,从而得到一种简化算法,该算法在广泛的基准函数中表现出卓越性能,尤其是在高维搜索空间中。针对15个基准函数和维度(D = 2、5、10、30、50、100、200)上的26种既定自然启发式优化算法(NIOAs)进行的全面比较评估和统计测试证实了ETOSO在解的准确性、收敛速度、计算复杂性和一致性方面的优越性。