Suppr超能文献

交叉苔藓生长优化:一种用于全局生产与优化的增强型生物启发算法。

Crisscross Moss Growth Optimization: An Enhanced Bio-Inspired Algorithm for Global Production and Optimization.

作者信息

Yue Tong, Li Tao

机构信息

School of Geosciences, Yangtze University, Wuhan 430100, China.

出版信息

Biomimetics (Basel). 2025 Jan 7;10(1):32. doi: 10.3390/biomimetics10010032.

Abstract

Global optimization problems, prevalent across scientific and engineering disciplines, necessitate efficient algorithms for navigating complex, high-dimensional search spaces. Drawing inspiration from the resilient and adaptive growth strategies of moss colonies, the moss growth optimization (MGO) algorithm presents a promising biomimetic approach to these challenges. However, the original MGO can experience premature convergence and limited exploration capabilities. This paper introduces an enhanced bio-inspired algorithm, termed crisscross moss growth optimization (CCMGO), which incorporates a crisscross (CC) strategy and a dynamic grouping parameter, further emulating the biological mechanisms of spore dispersal and resource allocation in moss. By mimicking the interwoven growth patterns of moss, the CC strategy facilitates improved information exchange among population members, thereby enhancing offspring diversity and accelerating convergence. The dynamic grouping parameter, analogous to the adaptive resource allocation strategies of moss in response to environmental changes, balances exploration and exploitation for a more efficient search. Key findings from rigorous experimental evaluations using the CEC2017 benchmark suite demonstrate that CCMGO consistently outperforms nine established metaheuristic algorithms across diverse benchmark functions. Furthermore, in a real-world application to a three-channel reservoir production optimization problem, CCMGO achieves a significantly higher net present value (NPV) compared to benchmark algorithms. This successful application highlights CCMGO's potential as a robust and adaptable tool for addressing complex, real-world optimization challenges, particularly those found in resource management and other nature-inspired domains.

摘要

全局优化问题在科学和工程学科中普遍存在,需要高效的算法来在复杂的高维搜索空间中进行导航。受苔藓群落弹性和适应性生长策略的启发,苔藓生长优化(MGO)算法为应对这些挑战提供了一种很有前景的仿生方法。然而,原始的MGO可能会出现早熟收敛和探索能力有限的问题。本文介绍了一种增强的生物启发算法,称为交叉苔藓生长优化(CCMGO),它结合了交叉(CC)策略和动态分组参数,进一步模拟了苔藓中孢子传播和资源分配的生物学机制。通过模仿苔藓的交织生长模式,CC策略促进了种群成员之间更好的信息交换,从而提高了后代的多样性并加速了收敛。动态分组参数类似于苔藓响应环境变化的自适应资源分配策略,平衡了探索和利用,以实现更高效的搜索。使用CEC2017基准测试套件进行的严格实验评估的主要结果表明,在各种基准函数上,CCMGO始终优于九种已有的元启发式算法。此外,在一个三通道油藏产量优化问题的实际应用中,与基准算法相比,CCMGO实现了显著更高的净现值(NPV)。这一成功应用凸显了CCMGO作为一种强大且适应性强的工具来应对复杂的实际优化挑战的潜力,特别是在资源管理和其他自然启发领域中发现的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d53/11759166/4da433eda391/biomimetics-10-00032-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验