文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能预测中非共和国班吉社区层面的潜在结核病热点地区。

Leveraging Artificial Intelligence to Predict Potential TB Hotspots at the Community Level in Bangui, Republic of Central Africa.

作者信息

Koura Kobto G, Hashmi Sumbul, Menon Sonia, Gando Hervé G, Yamodo Aziz K, Budts Anne-Laure, Meurrens Vincent, Lapelou Saint-Cyr S Koyato, Mbitikon Olivia B, Potgieter Matthys, Cauwelaert Caroline Van

机构信息

International Union Against Tuberculosis and Lung Disease, 75001 Paris, France.

UMR261 MERIT, Université Paris Cité, IRD, 75006 Paris, France.

出版信息

Trop Med Infect Dis. 2025 Apr 3;10(4):93. doi: 10.3390/tropicalmed10040093.


DOI:10.3390/tropicalmed10040093
PMID:40278766
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12031499/
Abstract

Tuberculosis (TB) is a global health challenge, particularly in the Central African Republic (CAR), which is classified as a high TB burden country. In the CAR, factors like poverty, limited healthcare access, high HIV prevalence, malnutrition, inadequate sanitation, low measles vaccination coverage, and conflict-driven crowded living conditions elevate TB risk. Improved AI-driven surveillance is hypothesized to address under-reporting and underdiagnosis. Therefore, we created an epidemiological digital representation of TB in Bangui by employing passive data collection, spatial analysis using a 100 × 100 m grid, and mapping TB treatment services. Our approach included estimating undiagnosed TB cases through the integration of TB incidence, notification rates, and diagnostic data. High-resolution predictions are achieved by subdividing the area into smaller units while considering influencing variables within the Bayesian model. By designating moderate and high-risk hotspots, the model highlighted the potential for precise resource allocation in TB control. The strength of our model lies in its adaptability to overcome challenges, although this may have been to the detriment of precision in some areas. Research is envisioned to evaluate the model's accuracy, and future research should consider exploring the integration of multidrug-resistant TB within the model.

摘要

结核病是一项全球性的健康挑战,在中非共和国(CAR)尤为突出,该国被列为结核病高负担国家。在中非共和国,贫困、医疗服务可及性有限、艾滋病毒高流行率、营养不良、卫生条件差、麻疹疫苗接种覆盖率低以及冲突导致的拥挤生活条件等因素增加了结核病风险。据推测,改进人工智能驱动的监测可解决报告不足和诊断不足的问题。因此,我们通过采用被动数据收集、使用100×100米网格进行空间分析以及绘制结核病治疗服务地图,创建了班吉市结核病的流行病学数字模型。我们的方法包括通过整合结核病发病率、报告率和诊断数据来估计未诊断的结核病病例。通过在贝叶斯模型中考虑影响变量,将区域细分为更小的单元,从而实现高分辨率预测。通过指定中度和高风险热点地区,该模型突出了在结核病控制中进行精确资源分配的潜力。我们模型的优势在于其适应并克服挑战的能力,尽管这在某些方面可能牺牲了精度。预计将开展研究以评估该模型的准确性,未来的研究应考虑探索将耐多药结核病纳入该模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/cbfd6b941afb/tropicalmed-10-00093-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/6931312a3ea7/tropicalmed-10-00093-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/a9c8908c8996/tropicalmed-10-00093-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/aa8386e9cf36/tropicalmed-10-00093-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/cbfd6b941afb/tropicalmed-10-00093-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/6931312a3ea7/tropicalmed-10-00093-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/a9c8908c8996/tropicalmed-10-00093-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/aa8386e9cf36/tropicalmed-10-00093-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/12031499/cbfd6b941afb/tropicalmed-10-00093-g004.jpg

相似文献

[1]
Leveraging Artificial Intelligence to Predict Potential TB Hotspots at the Community Level in Bangui, Republic of Central Africa.

Trop Med Infect Dis. 2025-4-3

[2]
Efficacy of BCG vaccination of the newborn: evaluation by a follow-up study of contacts in Bangui.

Int J Epidemiol. 1995-10

[3]
[Tuberculosis in Asia].

Kekkaku. 2002-10

[4]
Subclinical spp. Infections in a Community Setting in Bangui, Central African Republic.

Res Rep Trop Med. 2025-1-21

[5]
Effectiveness of Using AI-Driven Hotspot Mapping for Active Case Finding of Tuberculosis in Southwestern Nigeria.

Trop Med Infect Dis. 2024-4-29

[6]
Surveillance of drug-resistant childhood tuberculosis in Bangui, Central African Republic.

Int J Tuberc Lung Dis. 2004-5

[7]
Assessing spatial heterogeneity of multidrug-resistant tuberculosis in a high-burden country.

Eur Respir J. 2012-10-25

[8]
LSTM-Based Prediction Model for Tuberculosis Among HIV-Infected Patients Using Structured Electronic Medical Records: A Retrospective Machine Learning Study.

J Multidiscip Healthc. 2024-7-23

[9]
Disparities in access to diagnosis and care in Blantyre, Malawi, identified through enhanced tuberculosis surveillance and spatial analysis.

BMC Med. 2019-1-29

[10]
Global perspectives on tuberculosis in prisons and incarceration centers - Risk factors, priority needs, challenges for control and the way forward.

IJID Reg. 2025-3-19

本文引用的文献

[1]
Undernutrition as a risk factor for tuberculosis disease.

Cochrane Database Syst Rev. 2024-6-11

[2]
Geo-spatial high-risk clusters of Tuberculosis in the global general population: a systematic review.

BMC Public Health. 2023-8-19

[3]
The Rise of AI: How Artificial Intelligence is Revolutionizing Infectious Disease Control.

Ann Biomed Eng. 2023-12

[4]
Editorial: Infectious Disease Surveillance Using Artificial Intelligence (AI) and its Role in Epidemic and Pandemic Preparedness.

Med Sci Monit. 2023-6-1

[5]
Risk factors for the development of tuberculosis among the pediatric population: a systematic review and meta-analysis.

Eur J Pediatr. 2023-7

[6]
Effect of Temperature and Altitude Difference on Tuberculosis Notification: A Systematic Review.

J Glob Infect Dis. 2019

[7]
The Risk of Tuberculosis among Populations Living in Slum Settings: a Systematic Review and Meta-analysis.

J Urban Health. 2019-4

[8]
Determinants of tuberculosis transmission and treatment abandonment in Fortaleza, Brazil.

BMC Public Health. 2017-5-25

[9]
Spatial distribution of tuberculosis from 2002 to 2012 in a midsize city in Brazil.

BMC Public Health. 2016-9-1

[10]
HIV and tuberculosis: a deadly human syndemic.

Clin Microbiol Rev. 2011-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索