Koura Kobto G, Hashmi Sumbul, Menon Sonia, Gando Hervé G, Yamodo Aziz K, Budts Anne-Laure, Meurrens Vincent, Lapelou Saint-Cyr S Koyato, Mbitikon Olivia B, Potgieter Matthys, Cauwelaert Caroline Van
International Union Against Tuberculosis and Lung Disease, 75001 Paris, France.
UMR261 MERIT, Université Paris Cité, IRD, 75006 Paris, France.
Trop Med Infect Dis. 2025 Apr 3;10(4):93. doi: 10.3390/tropicalmed10040093.
Tuberculosis (TB) is a global health challenge, particularly in the Central African Republic (CAR), which is classified as a high TB burden country. In the CAR, factors like poverty, limited healthcare access, high HIV prevalence, malnutrition, inadequate sanitation, low measles vaccination coverage, and conflict-driven crowded living conditions elevate TB risk. Improved AI-driven surveillance is hypothesized to address under-reporting and underdiagnosis. Therefore, we created an epidemiological digital representation of TB in Bangui by employing passive data collection, spatial analysis using a 100 × 100 m grid, and mapping TB treatment services. Our approach included estimating undiagnosed TB cases through the integration of TB incidence, notification rates, and diagnostic data. High-resolution predictions are achieved by subdividing the area into smaller units while considering influencing variables within the Bayesian model. By designating moderate and high-risk hotspots, the model highlighted the potential for precise resource allocation in TB control. The strength of our model lies in its adaptability to overcome challenges, although this may have been to the detriment of precision in some areas. Research is envisioned to evaluate the model's accuracy, and future research should consider exploring the integration of multidrug-resistant TB within the model.
结核病是一项全球性的健康挑战,在中非共和国(CAR)尤为突出,该国被列为结核病高负担国家。在中非共和国,贫困、医疗服务可及性有限、艾滋病毒高流行率、营养不良、卫生条件差、麻疹疫苗接种覆盖率低以及冲突导致的拥挤生活条件等因素增加了结核病风险。据推测,改进人工智能驱动的监测可解决报告不足和诊断不足的问题。因此,我们通过采用被动数据收集、使用100×100米网格进行空间分析以及绘制结核病治疗服务地图,创建了班吉市结核病的流行病学数字模型。我们的方法包括通过整合结核病发病率、报告率和诊断数据来估计未诊断的结核病病例。通过在贝叶斯模型中考虑影响变量,将区域细分为更小的单元,从而实现高分辨率预测。通过指定中度和高风险热点地区,该模型突出了在结核病控制中进行精确资源分配的潜力。我们模型的优势在于其适应并克服挑战的能力,尽管这在某些方面可能牺牲了精度。预计将开展研究以评估该模型的准确性,未来的研究应考虑探索将耐多药结核病纳入该模型。
Kekkaku. 2002-10
Res Rep Trop Med. 2025-1-21
Trop Med Infect Dis. 2024-4-29
Int J Tuberc Lung Dis. 2004-5
Eur Respir J. 2012-10-25
Cochrane Database Syst Rev. 2024-6-11
BMC Public Health. 2023-8-19
Ann Biomed Eng. 2023-12
BMC Public Health. 2017-5-25
BMC Public Health. 2016-9-1
Clin Microbiol Rev. 2011-4