Dadu Anant, Ta Michael, Tustison Nicholas J, Daneshmand Ali, Marek Ken, Singleton Andrew B, Campbell Roy H, Nalls Mike A, Iwaki Hirotaka, Avants Brian, Faghri Faraz
Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA.
Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, 20892, USA.
medRxiv. 2024 Oct 28:2024.10.27.24316215. doi: 10.1101/2024.10.27.24316215.
Alzheimer's disease and related dementias (ADRD) and Parkinson's disease (PD) are the most common neurodegenerative conditions. These central nervous system disorders impact both the structure and function of the brain and may lead to imaging changes that precede symptoms. Patients with ADRD or PD have long asymptomatic phases that exhibit significant heterogeneity. Hence, quantitative measures that can provide early disease indicators are necessary to improve patient stratification, clinical care, and clinical trial design. This work uses machine learning techniques to derive such a quantitative marker from T1-weighted (T1w) brain Magnetic resonance imaging (MRI).
In this retrospective study, we developed machine learning (ML) based disease-specific scores based on T1w brain MRI utilizing Parkinson's Disease Progression Marker Initiative (PPMI) and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts. We evaluated the potential of ML-based scores for early diagnosis, prognosis, and monitoring of ADRD and PD in an independent large-scale population-based longitudinal cohort, UK Biobank.
1,826 dementia images from 731 participants, 3,161 healthy control images from 925 participants from the ADNI cohort, 684 PD images from 319 participants, and 232 healthy control images from 145 participants from the PPMI cohort were used to train machine learning models. The classification performance is 0.94 [95% CI: 0.93-0.96] area under the ROC Curve (AUC) for ADRD detection and 0.63 [95% CI: 0.57-0.71] for PD detection using 790 extracted structural brain features. The most predictive regions include the hippocampus and temporal brain regions in ADRD and the substantia nigra in PD. The normalized ML model's probabilistic output (ADRD and PD imaging scores) was evaluated on 42,835 participants with imaging data from the UK Biobank. There are 66 cases for ADRD and 40 PD cases whose T1 brain MRI is available during pre-diagnostic phases. For diagnosis occurrence events within 5 years, the integrated survival model achieves a time-dependent AUC of 0.86 [95% CI: 0.80-0.92] for dementia and 0.89 [95% CI: 0.85-0.94] for PD. ADRD imaging score is strongly associated with dementia-free survival (hazard ratio (HR) 1.76 [95% CI: 1.50-2.05] per S.D. of imaging score), and PD imaging score shows association with PD-free survival (hazard ratio 2.33 [95% CI: 1.55-3.50]) in our integrated model. HR and prevalence increased stepwise over imaging score quartiles for PD, demonstrating heterogeneity. As a proxy for diagnosis, we validated AD/PD polygenic risk scores of 42,835 subjects against the imaging scores, showing a highly significant association after adjusting for covariates. In both the PPMI and ADNI cohorts, the scores are associated with clinical assessments, including the Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog), and pathological markers, which include amyloid and tau. Finally, imaging scores are associated with polygenic risk scores for multiple diseases. Our results suggest that we can use imaging scores to assess the genetic architecture of such disorders in the future.
Our study demonstrates the use of quantitative markers generated using machine learning techniques for ADRD and PD. We show that disease probability scores obtained from brain structural features are useful for early detection, prognosis prediction, and monitoring disease progression. To facilitate community engagement and external tests of model utility, an interactive app to explore summary level data from this study and dive into external data can be found here https://ndds-brainimaging-ml.streamlit.app. As far as we know, this is the first publicly available cloud-based MRI prediction application.
US National Institute on Aging, and US National Institutes of Health.
阿尔茨海默病及相关痴呆症(ADRD)和帕金森病(PD)是最常见的神经退行性疾病。这些中枢神经系统疾病会影响大脑的结构和功能,并可能导致症状出现之前的影像学变化。ADRD或PD患者有很长的无症状期,且表现出显著的异质性。因此,能够提供早期疾病指标的定量测量方法对于改善患者分层、临床护理和临床试验设计是必要的。这项工作使用机器学习技术从T1加权(T1w)脑磁共振成像(MRI)中得出这样一个定量标志物。
在这项回顾性研究中,我们利用帕金森病进展标志物倡议(PPMI)和阿尔茨海默病神经影像学倡议(ADNI)队列,基于T1w脑MRI开发了基于机器学习(ML)的疾病特异性评分。我们在一个独立的基于大规模人群的纵向队列——英国生物银行中,评估了基于ML的评分在ADRD和PD的早期诊断、预后及监测方面的潜力。
来自ADNI队列的731名参与者的1826张痴呆图像、925名参与者的3161张健康对照图像、来自PPMI队列的319名参与者的684张PD图像以及145名参与者的232张健康对照图像被用于训练机器学习模型。使用790个提取的脑结构特征,ADRD检测的分类性能在ROC曲线(AUC)下为0.94 [95% CI:0.93 - 0.96],PD检测为0.63 [95% CI:0.57 - 0.71]。最具预测性的区域在ADRD中包括海马体和颞叶脑区,在PD中包括黑质。标准化的ML模型概率输出(ADRD和PD成像评分)在来自英国生物银行的42835名有成像数据的参与者中进行了评估。有66例ADRD病例和40例PD病例在诊断前阶段有T1脑MRI数据。对于5年内的诊断发生事件,综合生存模型在痴呆症方面实现了时间依赖的AUC为0.86 [95% CI:0.80 - 0.92],在PD方面为0.89 [95% CI:0.85 - 0.94]。在我们的综合模型中,ADRD成像评分与无痴呆生存密切相关(风险比(HR)为每成像评分标准差1.76 [95% CI:1.50 - 2.05]),PD成像评分与无PD生存相关(风险比为2.33 [95% CI:1.55 - 3.50])。PD的HR和患病率在成像评分四分位数上逐步增加,显示出异质性。作为诊断的替代指标,我们针对成像评分验证了42835名受试者的AD/PD多基因风险评分,在调整协变量后显示出高度显著的关联。在PPMI和ADNI队列中,这些评分都与临床评估相关,包括简易精神状态检查(MMSE)、阿尔茨海默病评估量表 - 认知子量表(ADAS - Cog)以及病理标志物,如淀粉样蛋白和tau。最后,成像评分与多种疾病的多基因风险评分相关。我们的结果表明,未来我们可以使用成像评分来评估此类疾病的遗传结构。
我们的研究展示了使用机器学习技术为ADRD和PD生成定量标志物。我们表明,从脑结构特征获得的疾病概率评分对于早期检测、预后预测和监测疾病进展是有用的。为了促进社区参与和模型效用的外部测试,可在此处https://ndds - brainimaging - ml.streamlit.app找到一个交互式应用程序,用于探索本研究的汇总数据并深入研究外部数据。据我们所知,这是第一个公开可用的基于云的MRI预测应用程序。
美国国立衰老研究所和美国国立卫生研究院。