L3i EA 2118, La Rochelle Université, La Rochelle, France.
LaBRI CNRS 5800, Bordeaux University, Bordeaux, France.
Int J Comput Assist Radiol Surg. 2023 May;18(5):809-818. doi: 10.1007/s11548-023-02866-6. Epub 2023 Mar 25.
Monitoring and predicting the cognitive state of subjects with neurodegenerative disorders is crucial to provide appropriate treatment as soon as possible. In this work, we present a machine learning approach using multimodal data (brain MRI and clinical) from two early medical visits, to predict the longer-term cognitive decline of patients. Using transfer learning, our model can be successfully transferred from one neurodegenerative disease (Alzheimer's) to another (Parkinson's).
Our model is a Deep Neural Network with siamese sub-modules dedicated to extracting features from each modality. We pre-train it with data from ADNI (Alzheimer's disease), then transfer it on the smaller PPMI dataset (Parkinson's disease). We show that, even when we do not fine-tune the filters learnt from the ADNI MRIs, the transferred model's results are satisfying on PPMI.
The first main result is that our model provides satisfying long-term predictions of cognitive decline from any pair of early visits, with no fixed time delay between these visits (provided the potential decline has started at the second visit). The second main result is that the prediction performance on Parkinson's dataset (PPMI) reaches an AUC of 0.81 on PPMI after transfer learning from Alzheimer's dataset (ADNI), without even having to re-train the image filters, versus an AUC of 0.72 for the model trained from scratch on PPMI.
First, our model is effective for predicting long-term cognitive decline from only two visits, even with irregular intervals of time. When dealing with neurodegenerative diseases, where patients often miss some control visits, this is an important finding. Second, our model is able to transfer the knowledge learnt from one neurodegenerative disease (Alzheimer's) to another (Parkinson's), when using the same imaging modalities (brain MRI) and different clinical variables. This makes it usable even for diseases that are rare or under-studied.
监测和预测神经退行性疾病患者的认知状态对于尽快提供适当的治疗至关重要。在这项工作中,我们提出了一种使用多模态数据(脑 MRI 和临床)的机器学习方法,从两次早期就诊中预测患者的长期认知下降。我们的模型使用迁移学习,可以成功地从一种神经退行性疾病(阿尔茨海默病)转移到另一种(帕金森病)。
我们的模型是一个具有孪生子模块的深度神经网络,专门从每种模态中提取特征。我们使用 ADNI(阿尔茨海默病)的数据对其进行预训练,然后将其转移到较小的 PPMI 数据集(帕金森病)上。我们表明,即使我们不对从 ADNI MRI 中学到的过滤器进行微调,转移模型在 PPMI 上的结果也令人满意。
第一个主要结果是,我们的模型可以从任何两次早期就诊中提供令人满意的长期认知下降预测,两次就诊之间没有固定的时间延迟(只要潜在的下降是在第二次就诊时开始的)。第二个主要结果是,在从阿尔茨海默病数据集(ADNI)转移学习到帕金森病数据集(PPMI)后,预测性能达到 0.81 的 AUC,甚至不需要重新训练图像过滤器,而从头开始在 PPMI 上训练的模型的 AUC 为 0.72。
首先,我们的模型仅通过两次就诊即可有效预测长期认知下降,即使时间间隔不规则。在处理神经退行性疾病时,患者经常会错过一些对照就诊,这是一个重要的发现。其次,当使用相同的成像模态(脑 MRI)和不同的临床变量时,我们的模型能够将从一种神经退行性疾病(阿尔茨海默病)学到的知识转移到另一种疾病(帕金森病)。这使得即使对于罕见或研究较少的疾病也可以使用。