Suppr超能文献

使用泊松回归和机器学习方法对儿童1型糖尿病新发病例数进行建模;沙特阿拉伯的一个案例研究。

Modeling the number of new cases of childhood type 1 diabetes using Poisson regression and machine learning methods; a case study in Saudi Arabia.

作者信息

Alazwari Ahood, Tafakori Laleh, Johnstone Alice, Abdollahian Mali

机构信息

School of Science, RMIT University, Melbourne, Victoria, Australia.

School of Science, Al-Baha University, Al-Baha, Saudi Arabia.

出版信息

PLoS One. 2025 Apr 25;20(4):e0321480. doi: 10.1371/journal.pone.0321480. eCollection 2025.

Abstract

Diabetes mellitus stands out as one of the most prevalent chronic conditions affecting pediatric populations. The escalating incidence of childhood type 1 diabetes (T1D) globally is a matter of increasing concern. Developing an effective model that leverages Key Performance Indicators (KPIs) to understand the incidence of T1D in children would significantly assist medical practitioners in devising targeted monitoring strategies. This study models the number of monthly new cases of T1D and its associated KPIs among children aged 0 to 14 in Saudi Arabia. The study involved collecting de-identified data (n=377) from diagnoses made between 2010 and 2020, sourced from pediatric diabetes centers in three cities across Saudi Arabia. Poisson regression (PR), and various machine learning (ML) techniques, including random forest (RF), support vector machine (SVM), and K-nearest neighbor (KNN), were employed to model the monthly number of new T1D cases using the local data. The performance of these models was assessed using both numbers of KPIs and metrics such as the coefficient of determination ([Formula: see text]), root mean squared error (RMSE), and mean absolute error (MAE). Among various Poisson and ML models, both model considering birth weight over 3.5 kg, maternal age over 25 years at the child's birth, family history of T1D, and nutrition history, specifically early introduction to cow milk and model taking into account birth weight over 3.5 kg, maternal age over 25 years at the child's birth, and nutrition history (early introduction to cow milk) emerged as the best-reduced models. They achieved [Formula: see text] of (0.89,0.88), RMSE (0.82, 0.95) and MAE(0.62,0.67). Additionally, models with fewer KPIs, like model that considers maternal age over 25 years and early introduction to cow milk, achieved consistently high [Formula: see text] values ranging from 0.80 to 0.83 across all models. Notably, this model demonstrated smaller values of RMSE (0.92) and MAE (0.67) in the KNN model. Simplified models facilitate the efficient creation and monitoring of KPIs profiles. The findings can assist healthcare providers in collecting and monitoring influential KPIs, enabling the development of targeted strategies to potentially reduce, or reverse, the increasing incidence rate of childhood T1D in Saudi Arabia.

摘要

糖尿病是影响儿童群体的最常见慢性病之一。全球儿童1型糖尿病(T1D)发病率不断上升,这一问题日益受到关注。开发一个利用关键绩效指标(KPI)来了解儿童T1D发病率的有效模型,将极大地帮助医学从业者制定有针对性的监测策略。本研究对沙特阿拉伯0至14岁儿童中T1D每月新发病例数及其相关KPI进行建模。该研究涉及从2010年至2020年期间的诊断中收集去识别化数据(n = 377),数据来源是沙特阿拉伯三个城市的儿科糖尿病中心。使用泊松回归(PR)以及各种机器学习(ML)技术,包括随机森林(RF)、支持向量机(SVM)和K近邻(KNN),利用本地数据对T1D每月新发病例数进行建模。使用KPI数量以及诸如决定系数([公式:见原文])、均方根误差(RMSE)和平均绝对误差(MAE)等指标对这些模型的性能进行评估。在各种泊松模型和ML模型中,考虑出生体重超过3.5千克、孩子出生时母亲年龄超过25岁、T1D家族病史以及营养史(特别是过早引入牛奶)的模型,以及考虑出生体重超过3.5千克、孩子出生时母亲年龄超过25岁和营养史(过早引入牛奶)的模型,均为最佳简化模型。它们的决定系数为(0.89, 0.88),RMSE为(0.82, 0.95),MAE为(0.62, 0.67)。此外,具有较少KPI的模型,如考虑母亲年龄超过25岁和过早引入牛奶的模型,在所有模型中始终具有0.80至0.83的高决定系数值。值得注意的是,该模型在KNN模型中的RMSE值(0.92)和MAE值(0.67)较小。简化模型有助于高效创建和监测KPI概况。这些发现可协助医疗保健提供者收集和监测有影响力的KPI,从而制定有针对性的策略,有可能降低或扭转沙特阿拉伯儿童T1D发病率不断上升的趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12027261/9d9ccd3cfd65/pone.0321480.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验