Coye Parker, Willitsford Adam
Johns Hopkins University Applied Physics Lab, 11100 Johns Hopkins Rd, Laurel, MD, 20723, USA.
Sci Rep. 2025 Apr 25;15(1):14475. doi: 10.1038/s41598-025-99306-z.
Climate change-driven atmospheric effects are of particular concern to those who operate electro-optic and infrared (EO/IR) sensors, as atmospheric constituents such as water vapor, carbon dioxide, and aerosols drive the absorption and scattering effects necessary to characterize deployed optical system performance. Current models of EO/IR propagation are fed by statistics built off the historical state of the atmosphere by utilizing ground based observations, satellite data, or reanalysis datasets. Such methods are effective at characterizing EO/IR propagation for historical time periods, but do little to inform decisions related to future sensor deployment. This work utilizes future projections of atmospheric variables from the Coupled Model Intercomparison Project (CMIP6), an international collection of climate models, to characterize atmospheric transmittance, a metric closely tied to EO/IR performance. Analysis of regional transmittance (particularly in the long-wave infrared) reveals drops by as much as 20% from 2015-2100 for a path as short as 2 km - this is nearly a doubling of the band averaged extinction coefficient.
气候变化驱动的大气效应尤其受到那些操作电光和红外(EO/IR)传感器的人员的关注,因为诸如水蒸气、二氧化碳和气溶胶等大气成分会引发吸收和散射效应,而这些效应是表征已部署光学系统性能所必需的。当前的EO/IR传播模型是通过利用地面观测、卫星数据或再分析数据集,基于大气的历史状态构建的统计数据来提供输入的。这些方法在表征历史时间段内的EO/IR传播方面很有效,但对于与未来传感器部署相关的决策几乎没有帮助。这项工作利用了来自耦合模型比较计划(CMIP6)的大气变量未来预测结果,CMIP6是一个国际气候模型集合,用于表征大气透过率,这是一个与EO/IR性能密切相关的指标。对区域透过率(特别是在长波红外波段)的分析表明,对于短至2公里的路径,从2015年到2100年透过率下降高达20%——这几乎是波段平均消光系数的两倍。