Suppr超能文献

使用机器学习模型预测产前抑郁症并评估模型偏差

Predicting Prenatal Depression and Assessing Model Bias Using Machine Learning Models.

作者信息

Huang Yongchao, Alvernaz Suzanne, Kim Sage J, Maki Pauline, Dai Yang, Peñalver Bernabé Beatriz

机构信息

Department of Biomedical Engineering, Colleges of Engineering and Medicine, University of Illinois, Chicago, Illinois.

Division of Health Policy and Administration, School of Public Health, University of Illinois, Chicago, Illinois.

出版信息

Biol Psychiatry Glob Open Sci. 2024 Aug 14;4(6):100376. doi: 10.1016/j.bpsgos.2024.100376. eCollection 2024 Nov.

Abstract

BACKGROUND

Perinatal depression is one of the most common medical complications during pregnancy and postpartum period, affecting 10% to 20% of pregnant individuals, with higher rates among Black and Latina women who are also less likely to be diagnosed and treated. Machine learning (ML) models based on electronic medical records (EMRs) have effectively predicted postpartum depression in middle-class White women but have rarely included sufficient proportions of racial/ethnic minorities, which has contributed to biases in ML models. Our goal is to determine whether ML models could predict depression in early pregnancy in racial/ethnic minority women by leveraging EMR data.

METHODS

We extracted EMRs from a large U.S. urban hospital serving mostly low-income Black and Hispanic women ( = 5875). Depressive symptom severity was assessed using the Patient Health Questionnaire-9 self-report questionnaire. We investigated multiple ML classifiers using Shapley additive explanations for model interpretation and determined prediction bias with 4 metrics: disparate impact, equal opportunity difference, and equalized odds (standard deviations of true positives and false positives).

RESULTS

Although the best-performing ML model's (elastic net) performance was low (area under the receiver operating characteristic curve = 0.61), we identified known perinatal depression risk factors such as unplanned pregnancy and being single and underexplored factors such as self-reported pain, lower prenatal vitamin intake, asthma, carrying a male fetus, and lower platelet levels. Despite the sample comprising mostly low-income minority women (54% Black, 27% Latina), the model performed worse for these communities (area under the receiver operating characteristic curve: 57% Black, 59% Latina women vs. 64% White women).

CONCLUSIONS

EMR-based ML models could moderately predict early pregnancy depression but exhibited biased performance against low-income minority women.

摘要

背景

围产期抑郁症是妊娠和产后最常见的医学并发症之一,影响10%至20%的孕妇,黑人及拉丁裔女性的发病率更高,且她们被诊断和治疗的可能性也更低。基于电子病历(EMR)的机器学习(ML)模型已有效预测了中产阶级白人女性的产后抑郁症,但很少纳入足够比例的种族/族裔少数群体,这导致了ML模型存在偏差。我们的目标是通过利用EMR数据,确定ML模型是否能够预测种族/族裔少数群体女性在孕早期的抑郁症。

方法

我们从一家主要服务低收入黑人和西班牙裔女性的大型美国城市医院提取了EMR(n = 5875)。使用患者健康问卷-9自评问卷评估抑郁症状严重程度。我们使用夏普利值加法解释进行模型解释,研究了多种ML分类器,并通过4个指标确定预测偏差:差异影响、机会均等差异和均衡赔率(真阳性和假阳性的标准差)。

结果

尽管表现最佳的ML模型(弹性网络)的性能较低(受试者工作特征曲线下面积 = 0.61),但我们识别出了已知的围产期抑郁症风险因素,如意外怀孕和单身,以及未充分探索的因素,如自我报告的疼痛、产前维生素摄入量较低、哮喘、怀男胎和血小板水平较低。尽管样本主要由低收入少数群体女性组成(54%为黑人,27%为拉丁裔),但该模型在这些群体中的表现更差(受试者工作特征曲线下面积:黑人女性为57%,拉丁裔女性为59%,而白人女性为64%)。

结论

基于EMR的ML模型能够适度预测孕早期抑郁症,但对低收入少数群体女性表现出有偏差的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02ff/11470166/be13b837809d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验