文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

猪舍中可吸入颗粒物和颗粒物微生物群落的季节动态

Seasonal Dynamics of Microbial Communities in PM and PM from a Pig Barn.

作者信息

Tang Qian, Zhang Minyang, Yu Lili, Deng Kaidong, Mao Huihua, Hu Jingwen, Wang Chuang

机构信息

College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210038, China.

Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Animals (Basel). 2025 Apr 12;15(8):1116. doi: 10.3390/ani15081116.


DOI:10.3390/ani15081116
PMID:40281950
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12024127/
Abstract

Modern, intensive, high-density farming practices cause elevated concentrations of particulate matter (PM) inside livestock barns. PM in livestock barns is predominantly biological, hence, it contains abundant microorganisms. Understanding the microbial composition of PM is crucial for assessing the hazards of air emitted from livestock barns. PM and PM from a pig barn were collected in winter and spring, and morphological, chemical, and microbial analyses were performed. The PM samples exhibit diverse morphological characteristics. The top three elements detected in the PM samples were O, C, and Si. Other elements, including N, Al, K, Mg, Ca, Na, Zn, P, W, Ba, Fe, S, Cl, and Ti, were also identified in these samples. For bacterial α diversity, the Sobs and Chao1 indices for PM were significantly higher than those for PM in winter ( < 0.05), and in spring, the ACE index for PM was significantly higher than that for PM ( < 0.05). For fungal α diversity, the Shannon index for PM was significantly higher than that for PM in winter ( < 0.01), and in spring, the Ace index for PM was significantly higher than that for PM ( < 0.05). The β diversity results indicate that season, rather than the particle size, had a significant effect on the microbial composition in the PM samples. A total of seven bacterial pathogen genera and 16 fungal allergen genera were identified in PM samples. In winter, the relative abundances of total bacterial pathogens and fungal allergens in PM were higher than those in PM. In contrast, the relative abundance of fungal allergens in PM was higher in spring than in winter. This study provides a comprehensive characterization of PM from a pig barn across the particle sizes and seasons.

摘要

现代集约化、高密度养殖方式导致牲畜棚内颗粒物(PM)浓度升高。牲畜棚内的PM主要是生物性的,因此含有丰富的微生物。了解PM的微生物组成对于评估牲畜棚排放空气的危害至关重要。在冬季和春季收集了猪舍的PM和PM,并进行了形态、化学和微生物分析。PM样品呈现出多样的形态特征。在PM样品中检测到的前三种元素是O、C和Si。在这些样品中还鉴定出了其他元素,包括N、Al、K、Mg、Ca、Na、Zn、P、W、Ba、Fe、S、Cl和Ti。对于细菌α多样性,PM的Sobs和Chao1指数显著高于冬季的PM(<0.05),在春季,PM的ACE指数显著高于PM(<0.05)。对于真菌α多样性,PM的Shannon指数显著高于冬季的PM(<0.01),在春季,PM的Ace指数显著高于PM(<0.05)。β多样性结果表明,季节而非粒径对PM样品中的微生物组成有显著影响。在PM样品中总共鉴定出7个细菌病原体属和16个真菌过敏原属。在冬季,PM中总细菌病原体和真菌过敏原的相对丰度高于PM中的。相比之下,春季PM中真菌过敏原的相对丰度高于冬季。本研究全面描述了猪舍不同粒径和季节的PM特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/73507d187b6d/animals-15-01116-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/259925b6ab5e/animals-15-01116-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/abf77bf0432e/animals-15-01116-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/d4e85841bcd4/animals-15-01116-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/a2bb17c5c563/animals-15-01116-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/b376c47cc7bb/animals-15-01116-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/6c78b063ce70/animals-15-01116-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/7dc190b9e48d/animals-15-01116-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/b7515dda808a/animals-15-01116-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/73507d187b6d/animals-15-01116-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/259925b6ab5e/animals-15-01116-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/abf77bf0432e/animals-15-01116-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/d4e85841bcd4/animals-15-01116-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/a2bb17c5c563/animals-15-01116-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/b376c47cc7bb/animals-15-01116-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/6c78b063ce70/animals-15-01116-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/7dc190b9e48d/animals-15-01116-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/b7515dda808a/animals-15-01116-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/12024127/73507d187b6d/animals-15-01116-g009.jpg

相似文献

[1]
Seasonal Dynamics of Microbial Communities in PM and PM from a Pig Barn.

Animals (Basel). 2025-4-12

[2]
Seasonal variations of microbial assemblage in fine particulate matter from a nursery pig house.

Sci Total Environ. 2019-11-1

[3]
Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere.

Sci Total Environ. 2022-7-20

[4]
Distribution and physicochemical properties of particulate matter in swine confinement barns.

Environ Pollut. 2019-4-17

[5]
Particulates and particulates-bound mercury (Hg(p)) sizes (PM, PM, PM, PM, PM) distributions study by using MOUDI sampler at a complex sampling site.

Environ Geochem Health. 2019-7-8

[6]
Characteristics and seasonal variations of PM2.5, PM10, and TSP aerosol in Beijing.

Biomed Environ Sci. 2006-12

[7]
Winter and spring variation in sources, chemical components and toxicological responses of urban air particulate matter samples in Guangzhou, China.

Sci Total Environ. 2022-11-1

[8]
Implications of PM chemical composition in modulating microbial community dynamics during spring in Seoul.

Environ Pollut. 2024-5-1

[9]
Assessment of the health impacts of particulate matter characteristics.

Res Rep Health Eff Inst. 2012-1

[10]
The London low emission zone baseline study.

Res Rep Health Eff Inst. 2011-11

本文引用的文献

[1]
Potentially pathogenic bacteria in the plastisphere from water, sediments, and commercial fish in a tropical coastal lagoon: An assessment and management proposal.

J Hazard Mater. 2024-11-5

[2]
Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes.

Front Microbiol. 2024-2-20

[3]
Bioaerosols in swine confinement buildings: A metaproteomic view.

Environ Microbiol Rep. 2023-12

[4]
Sampling and Characterization of Bioaerosols in Poultry Houses.

Microorganisms. 2023-8-11

[5]
Nasal staphylococci community of healthy pigs and pig-farmers in Aragon (Spain). Predominance and within-host resistome diversity in MRSA-CC398 and MSSA-CC9 lineages.

One Health. 2023-2-11

[6]
Lung Microbiota: Its Relationship to Respiratory System Diseases and Approaches for Lung-Targeted Probiotic Bacteria Delivery.

Mol Pharm. 2023-7-3

[7]
Pectin alleviates the pulmonary inflammatory response induced by PM from a pig house by modulating intestinal microbiota.

Ecotoxicol Environ Saf. 2023-8

[8]
Ecology of the respiratory tract microbiome.

Trends Microbiol. 2023-9

[9]
Characteristics and Traceability Analysis of Microbial Assemblage in Fine Particulate Matter from a Pig House.

Animals (Basel). 2023-3-15

[10]
Potential targeted therapy based on deep insight into the relationship between the pulmonary microbiota and immune regulation in lung fibrosis.

Front Immunol. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索