Suppr超能文献

保存化石软组织:推进蛋白质组学并揭示恐龙癌症的进化史。

Preserving Fossilized Soft Tissues: Advancing Proteomics and Unveiling the Evolutionary History of Cancer in Dinosaurs.

作者信息

Chandrasinghe Pramodh Chitral, Cereser Biancastella, Bertazzo Sergio, Csiki-Sava Zoltán, Stebbing Justin

机构信息

Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK.

Department of Surgery, Faculty of Medicine, University of Kelaniya, Kelaniya 11010, Sri Lanka.

出版信息

Biology (Basel). 2025 Apr 3;14(4):370. doi: 10.3390/biology14040370.

Abstract

Understanding how life-history strategies influence cancer susceptibility in dinosaurs requires a molecular-level analysis of preserved soft tissues. While previous research has largely focused on skeletal remains, the discovery of soft tissue structures in fossils, such as , highlights the need for a new approach. Paleoproteomics offers a transformative opportunity to analyze ancient proteins, revealing the evolutionary trade-offs between growth, reproduction, and cancer suppression. This study argues that prioritizing fossil collection and soft tissue preservation is crucial, as future advances in molecular techniques will allow deeper insights into disease evolution. By integrating life-history theory with paleopathology, we can better understand the selective pressures that shaped cancer susceptibility in extinct species and identify potential mechanisms of tumor resistance. This commentary highlights the necessity of long-term fossil conservation efforts to support future breakthroughs in evolutionary biology and comparative oncology.

摘要

了解生活史策略如何影响恐龙的癌症易感性需要对保存下来的软组织进行分子水平分析。虽然先前的研究主要集中在骨骼遗骸上,但化石中软组织结构的发现,如 ,凸显了采用新方法的必要性。古蛋白质组学为分析古代蛋白质提供了一个变革性的机会,揭示了生长、繁殖和癌症抑制之间的进化权衡。本研究认为,优先进行化石采集和软组织保存至关重要,因为分子技术的未来进展将使我们能够更深入地了解疾病的进化。通过将生活史理论与古病理学相结合,我们可以更好地理解塑造灭绝物种癌症易感性的选择压力,并确定肿瘤抗性的潜在机制。这篇评论强调了长期化石保护工作对于支持进化生物学和比较肿瘤学未来突破的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3750/12025216/0310ee4c3b9a/biology-14-00370-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验