Suppr超能文献

关于随机环境中磁场诱导的随机运动

On the Stochastic Motion Induced by Magnetic Fields in Random Environments.

作者信息

Kang Yun Jeong, Jung Jae Won, Seo Sung Kyu, Kim Kyungsik

机构信息

School of Liberal Studies, Wonkwang University, Iksan 54538, Republic of Korea.

DigiQuay Company Ltd., Seoul 06552, Republic of Korea.

出版信息

Entropy (Basel). 2025 Mar 21;27(4):330. doi: 10.3390/e27040330.

Abstract

Here, we study the Navier-Stokes equation for the motion of a passive particle based on the Fokker-Planck equation in an incompressible conducting fluid induced by a magnetic field subject to an exponentially correlated Gaussian force in three-time domains. For the hydro-magnetic case of velocity and the time-dependent magnetic field, the mean squared velocity for the joint probability density of velocity and the magnetic field has a super-diffusive form that scales as ∼t3 in t>>τ, while the mean squared displacement for the joint probability density of velocity and the magnetic field reduces to time ∼t4 in t<<τ. The motion of a passive particle for τ=0 and t>>τ behaves as a normal diffusion with the mean squared magnetic field being <h2(t)>∼t. In a short-time domain t<<τ, the moment in the magnetic field of the incompressible conducting fluid undergoes super-diffusion with μ2,0,2h∼t6, in agreement with our research outcome. Particularly, the combined entropy H(v,h,t) (H(h,v,t)) for an active particle with the perturbative force has a minimum value of ∼lnt2 (∼lnt2) in t>>τ (τ=0), while the largest displacement entropy value is proportional to lnt4 in t<<τ and τ=0.

摘要

在此,我们基于福克 - 普朗克方程研究在由磁场诱导的不可压缩导电流体中,在三个时域内受指数相关高斯力作用的被动粒子运动的纳维 - 斯托克斯方程。对于速度和随时间变化的磁场的磁流体情况,速度与磁场联合概率密度的均方速度具有超扩散形式,在(t>>\tau)时按(\sim t^3)缩放,而速度与磁场联合概率密度的均方位移在(t<<\tau)时减小到(\sim t^4)。对于(\tau = 0)且(t>>\tau),被动粒子的运动表现为正常扩散,均方磁场为(<h^2(t)>\sim t)。在短时间域(t<<\tau)中,不可压缩导电流体磁场中的矩经历超扩散,(\mu_{2,0,2h}\sim t^6),这与我们的研究结果一致。特别地,对于具有微扰力的主动粒子,组合熵(H(v,h,t))((H(h,v,t)))在(t>>\tau)((\tau = 0))时具有最小值(\sim \ln t^2)((\sim \ln t^2)),而在(t<<\tau)且(\tau = 0)时最大位移熵值与(\ln t^4)成正比。

相似文献

4
Spectrum of the fokker-planck operator representing diffusion in a random velocity field.表示在随机速度场中扩散的福克 - 普朗克算子的谱。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):196-203. doi: 10.1103/physreve.61.196.
6
Microscopic theory of anomalous diffusion based on particle interactions.基于粒子相互作用的反常扩散微观理论。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022108. doi: 10.1103/PhysRevE.88.022108. Epub 2013 Aug 7.
8
Perturbative path-integral study of active- and passive-tracer diffusion in fluctuating fields.波动场中主动和被动示踪剂扩散的微扰路径积分研究
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011148. doi: 10.1103/PhysRevE.84.011148. Epub 2011 Jul 29.

本文引用的文献

9
Inertial self-propelled particles.惯性自推进粒子。
J Chem Phys. 2021 Jan 14;154(2):024902. doi: 10.1063/5.0030940.
10
Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows.用于复杂湍流的壁面模型大涡模拟
Annu Rev Fluid Mech. 2018 Jan;50:535-561. doi: 10.1146/annurev-fluid-122316-045241.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验