Suppr超能文献

香农熵在分析波兰气候变率以模拟温度和降水不确定性中的动态变化

The Dynamics of Shannon Entropy in Analyzing Climate Variability for Modeling Temperature and Precipitation Uncertainty in Poland.

作者信息

Twaróg Bernard

机构信息

Department of Geoengineering and Water Management, Faculty of Environmental and Energy Engineering, Cracow University of Technology, 31-155 Cracow, Poland.

出版信息

Entropy (Basel). 2025 Apr 8;27(4):398. doi: 10.3390/e27040398.

Abstract

The aim of this study is to quantitatively analyze the long-term climate variability in Poland during the period 1901-2010, using Shannon entropy as a measure of uncertainty and complexity within the atmospheric system. The analysis is based on the premise that variations in temperature and precipitation reflect the dynamic nature of the climate, understood as a nonlinear system sensitive to fluctuations. This study focuses on monthly distributions of temperature and precipitation, modeled using the bivariate Clayton copula function. A normal marginal distribution was adopted for temperature and a gamma distribution for precipitation, both validated using the Anderson-Darling test. To improve estimation accuracy, a bootstrap resampling technique and numerical integration were applied to calculate Shannon entropy at each of the 396 grid points, with a spatial resolution of 0.25° × 0.25°. The results indicate a significant increase in Shannon entropy during the summer months, particularly in July (+0.203 bits) and January (+0.221 bits), compared to the baseline period (1901-1971), suggesting a growing unpredictability of the climate. The most pronounced trend changes were identified in the years 1985-1996 (as indicated by the Pettitt test), while seasonal trends were confirmed using the Mann-Kendall test. A spatial analysis of entropy at the levels of administrative regions and catchments revealed notable regional disparities-entropy peaked in January in the West Pomeranian Voivodeship (4.919 bits) and reached its minimum in April in Greater Poland (3.753 bits). Additionally, this study examined the relationship between Shannon entropy and global climatic indicators, including the Land-Ocean Temperature Index (NASA GISTEMP) and the ENSO index (NINO3.4). Statistically significant positive correlations were observed between entropy and global temperature anomalies during both winter (ρ = 0.826) and summer (ρ = 0.650), indicating potential linkages between local climate variability and global warming trends. To explore the direction of this relationship, a Granger causality test was conducted, which did not reveal statistically significant causality between NINO3.4 and Shannon entropy (p > 0.05 for all lags tested), suggesting that the observed relationships are likely co-varying rather than causal in the Granger sense. Further phase-space analysis (with a delay of τ = 3 months) allowed for the identification of attractors characteristic of chaotic systems. The entropy trajectories revealed transitions from equilibrium states (average entropy: 4.124-4.138 bits) to highly unstable states (up to 4.768 bits), confirming an increase in the complexity of the climate system. Shannon entropy thus proves to be a valuable tool for monitoring local climatic instability and may contribute to improved risk modeling of droughts and floods in the context of climate change in Poland.

摘要

本研究旨在利用香农熵作为大气系统不确定性和复杂性的度量,对1901 - 2010年期间波兰的长期气候变化进行定量分析。该分析基于这样一个前提,即温度和降水的变化反映了气候的动态本质,气候被理解为一个对波动敏感的非线性系统。本研究聚焦于温度和降水的月度分布,采用二元克莱顿Copula函数进行建模。温度采用正态边际分布,降水采用伽马分布,两者均通过安德森 - 达林检验进行验证。为提高估计精度,应用了自助重采样技术和数值积分来计算396个网格点中每个点的香农熵,空间分辨率为0.25°×0.25°。结果表明,与基准期(1901 - 1971年)相比,夏季月份的香农熵显著增加,特别是在7月(增加0.203比特)和1月(增加0.221比特),这表明气候的不可预测性在增加。1985 - 1996年期间确定了最明显的趋势变化(如佩蒂特检验所示),而季节性趋势通过曼 - 肯德尔检验得到证实。对行政区和集水区层面的熵进行空间分析,发现了显著的区域差异——西波美拉尼亚省1月的熵达到峰值(4.919比特),大波兰省4月的熵达到最小值(3.753比特)。此外,本研究还考察了香农熵与全球气候指标之间的关系,包括陆地 - 海洋温度指数(美国国家航空航天局全球气温数据集)和厄尔尼诺 - 南方涛动指数(NINO3.4)。在冬季(ρ = 0.826)和夏季(ρ = 0.650),熵与全球温度异常之间均观察到具有统计学意义的正相关,这表明当地气候变化与全球变暖趋势之间存在潜在联系。为探究这种关系的方向,进行了格兰杰因果检验,结果未发现NINO3.4与香农熵之间存在统计学意义的因果关系(所有测试滞后的p值均大于0.05),这表明所观察到的关系可能是共同变化的,而非格兰杰意义上的因果关系。进一步的相空间分析(延迟τ = 3个月)使得能够识别混沌系统特有的吸引子。熵轨迹显示从平衡状态(平均熵:4.124 - 4.138比特)转变为高度不稳定状态(高达4.768比特),证实了气候系统复杂性的增加。因此,香农熵被证明是监测当地气候不稳定的一个有价值的工具,并且可能有助于在波兰气候变化背景下改进干旱和洪水的风险建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1de/12025468/096e5c6bb98b/entropy-27-00398-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验