Suppr超能文献

用于增强呼气检测性能的具有自动潮气末呼吸气体收集功能的电子鼻系统设计

Design of an Electronic Nose System with Automatic End-Tidal Breath Gas Collection for Enhanced Breath Detection Performance.

作者信息

Xu Dongfu, Liu Pu, Meng Xiangming, Chen Yizhou, Du Lei, Zhang Yan, Qiao Lixin, Zhang Wei, Kuang Jiale, Liu Jingjing

机构信息

College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China.

Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Micromachines (Basel). 2025 Apr 14;16(4):463. doi: 10.3390/mi16040463.

Abstract

End-tidal breath gases originate deep within the lungs, and their composition is an especially accurate reflection of the body's metabolism and health status. Therefore, accurate collection of end-tidal breath gases is crucial to enhance electronic noses' performance in breath detection. Regarding this issue, this study proposes a novel electronic nose system and employs a threshold control method based on exhaled gas flow characteristics to design a gas collection module. The module monitors real-time gas flow with a flow meter and integrates solenoid valves to regulate the gas path, enabling automatic collection of end-tidal breath gas. In this way, the design reduces dead space gas contamination and the impact of individual breathing pattern differences. The sensor array is designed to detect the collected gas, and the response chamber is optimized to improve the detection stability. At the same time, the control module realizes automation of the experiment process, including control of the gas path state, signal transmission, and data storage. Finally, the system is used for breath detection. We employ classical machine learning algorithms to classify breath samples from different health conditions with a classification accuracy of more than 90%, which is better than the accuracy achieved in other studies of this type. This is due to the improved quality of the gas we extracted, demonstrating the superiority of our proposed electronic nose system.

摘要

呼末呼吸气体源自肺部深处,其成分能特别准确地反映人体的新陈代谢和健康状况。因此,准确采集呼末呼吸气体对于提高电子鼻在呼吸检测中的性能至关重要。针对这一问题,本研究提出了一种新型电子鼻系统,并采用基于呼出气流特性的阈值控制方法设计了一个气体采集模块。该模块通过流量计实时监测气流,并集成电磁阀来调节气路,从而实现呼末呼吸气体的自动采集。通过这种方式,该设计减少了死腔气体污染以及个体呼吸模式差异的影响。传感器阵列用于检测采集到的气体,对响应腔进行了优化以提高检测稳定性。同时,控制模块实现了实验过程的自动化,包括气路状态控制、信号传输和数据存储。最后,该系统用于呼吸检测。我们采用经典机器学习算法对来自不同健康状况的呼吸样本进行分类,分类准确率超过90%,优于此类其他研究的准确率。这是由于我们提取的气体质量得到了改善,证明了我们所提出的电子鼻系统的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9043/12029757/cfb5e220b01f/micromachines-16-00463-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验