文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载姜黄素的肝癌靶向甘草次酸复合胶束的制备与评价

Preparation and Evaluation of Hepatoma-Targeting Glycyrrhetinic Acid Composite Micelles Loaded with Curcumin.

作者信息

Guo Xueli, Liu Zhongyan, Wu Lina, Guo Pan

机构信息

State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.

Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.

出版信息

Pharmaceuticals (Basel). 2025 Mar 23;18(4):448. doi: 10.3390/ph18040448.


DOI:10.3390/ph18040448
PMID:40283886
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12030034/
Abstract

: Liver cancer, especially hepatocellular carcinoma, a prevalent malignant tumor of the digestive system, poses significant therapeutic challenges. While traditional chemotherapy can inhibit tumor progression, its clinical application is limited by insufficient efficacy. Hydrophobic therapeutic agents further encounter challenges including low tumor specificity, poor bioavailability, and severe systemic toxicity. This study aimed to develop a liver-targeted, glutathione (GSH)-responsive micellar system to synergistically enhance drug delivery and antitumor efficacy. : A GSH-responsive disulfide bond was chemically synthesized to conjugate glycyrrhetinic acid (GA) with curcumin (Cur) at a molar ratio of 1:1, forming a prodrug Cur-GA (CGA). This prodrug was co-assembled with glycyrrhizic acid (GL) at a 300% / loading ratio into micelles. The system was characterized for physicochemical properties, in vitro drug release in PBS (7.4) without GSH and in PBS (5.0) with 0, 5, or 10 mM GSH, cellular uptake in HepG2 cells, and in vivo efficacy in H22 hepatoma-bearing BALB/c mice. : The optimized micelles exhibited a hydrodynamic diameter of 157.67 ± 2.14 nm (PDI: 0.20 ± 0.02) and spherical morphology under TEM. The concentration of CUR in micelles can reach 1.04 mg/mL. In vitro release profiles confirmed GSH-dependent drug release, with 67.5% vs. <40% cumulative Cur release observed at 24 h with/without 10 mM GSH. Flow cytometry and high-content imaging revealed 1.8-fold higher cellular uptake of CGA-GL micelles compared to free drug ( < 0.001). In vivo, CGA-GL micelles achieving 3.6-fold higher tumor accumulation than non-targeted controls ( < 0.001), leading to 58.7% tumor volume reduction ( < 0.001). : The GA/GL-based micellar system synergistically enhanced efficacy through active targeting and stimuli-responsive release, providing a promising approach to overcome current limitations in hydrophobic drug delivery for hepatocellular carcinoma therapy.

摘要

肝癌,尤其是肝细胞癌,作为消化系统常见的恶性肿瘤,带来了重大的治疗挑战。虽然传统化疗可以抑制肿瘤进展,但其临床应用受到疗效不足的限制。疏水性治疗药物还面临诸多挑战,包括肿瘤特异性低、生物利用度差和严重的全身毒性。本研究旨在开发一种肝脏靶向、对谷胱甘肽(GSH)有响应的胶束系统,以协同增强药物递送和抗肿瘤疗效。:化学合成了一种对GSH有响应的二硫键,以1:1的摩尔比将甘草次酸(GA)与姜黄素(Cur)偶联,形成前药Cur-GA(CGA)。该前药与甘草酸(GL)以300%的负载率共组装成胶束。对该系统进行了理化性质表征、在无GSH的PBS(7.4)和含0、5或10 mM GSH的PBS(5.0)中的体外药物释放、在HepG2细胞中的细胞摄取以及在荷H22肝癌的BALB/c小鼠中的体内疗效研究。:优化后的胶束在透射电镜下显示流体动力学直径为157.67±2.14 nm(多分散指数:0.20±0.02),呈球形形态。胶束中CUR的浓度可达1.04 mg/mL。体外释放曲线证实了药物释放对GSH的依赖性,在有/无10 mM GSH的情况下,24小时时累积Cur释放分别为67.5%和<40%。流式细胞术和高内涵成像显示,CGA-GL胶束的细胞摄取量比游离药物高1.8倍(<0.001)。在体内,CGA-GL胶束的肿瘤蓄积量比非靶向对照高3.6倍(<0.001),导致肿瘤体积缩小58.7%(<0.001)。:基于GA/GL的胶束系统通过主动靶向和刺激响应释放协同增强了疗效,为克服目前肝细胞癌治疗中疏水性药物递送的局限性提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/909ac515226d/pharmaceuticals-18-00448-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/a1608dc26356/pharmaceuticals-18-00448-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/713d95f5eb03/pharmaceuticals-18-00448-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/7b9ecba10136/pharmaceuticals-18-00448-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/ab70bccc5747/pharmaceuticals-18-00448-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/ccced32d8d5a/pharmaceuticals-18-00448-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/be720e7e9cb9/pharmaceuticals-18-00448-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/a48a5b95b3ab/pharmaceuticals-18-00448-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/400c10abdb7a/pharmaceuticals-18-00448-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/2d6e70696a9f/pharmaceuticals-18-00448-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/f749fabd19a2/pharmaceuticals-18-00448-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/777a1ba42402/pharmaceuticals-18-00448-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/071ee418a9e0/pharmaceuticals-18-00448-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/77f72924823e/pharmaceuticals-18-00448-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/d118980ea5a8/pharmaceuticals-18-00448-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/70eed0c82459/pharmaceuticals-18-00448-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/4f610e8e7afa/pharmaceuticals-18-00448-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/ed0a1e1f62c8/pharmaceuticals-18-00448-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/ffa60c1ad533/pharmaceuticals-18-00448-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/5503eed75267/pharmaceuticals-18-00448-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/b9c62c03a98b/pharmaceuticals-18-00448-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/12e1e7deb6a6/pharmaceuticals-18-00448-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/260599e9ba0e/pharmaceuticals-18-00448-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/c83e2c33e732/pharmaceuticals-18-00448-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/da50a2425cdb/pharmaceuticals-18-00448-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/909ac515226d/pharmaceuticals-18-00448-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/a1608dc26356/pharmaceuticals-18-00448-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/713d95f5eb03/pharmaceuticals-18-00448-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/7b9ecba10136/pharmaceuticals-18-00448-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/ab70bccc5747/pharmaceuticals-18-00448-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/ccced32d8d5a/pharmaceuticals-18-00448-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/be720e7e9cb9/pharmaceuticals-18-00448-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/a48a5b95b3ab/pharmaceuticals-18-00448-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/400c10abdb7a/pharmaceuticals-18-00448-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/2d6e70696a9f/pharmaceuticals-18-00448-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/f749fabd19a2/pharmaceuticals-18-00448-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/777a1ba42402/pharmaceuticals-18-00448-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/071ee418a9e0/pharmaceuticals-18-00448-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/77f72924823e/pharmaceuticals-18-00448-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/d118980ea5a8/pharmaceuticals-18-00448-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/70eed0c82459/pharmaceuticals-18-00448-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/4f610e8e7afa/pharmaceuticals-18-00448-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/ed0a1e1f62c8/pharmaceuticals-18-00448-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/ffa60c1ad533/pharmaceuticals-18-00448-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/5503eed75267/pharmaceuticals-18-00448-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/b9c62c03a98b/pharmaceuticals-18-00448-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/12e1e7deb6a6/pharmaceuticals-18-00448-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/260599e9ba0e/pharmaceuticals-18-00448-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/c83e2c33e732/pharmaceuticals-18-00448-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/da50a2425cdb/pharmaceuticals-18-00448-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebc/12030034/909ac515226d/pharmaceuticals-18-00448-g025.jpg

相似文献

[1]
Preparation and Evaluation of Hepatoma-Targeting Glycyrrhetinic Acid Composite Micelles Loaded with Curcumin.

Pharmaceuticals (Basel). 2025-3-23

[2]
Hepatoma-Targeting and ROS-Responsive Polymeric Micelle-Based Chemotherapy Combined with Photodynamic Therapy for Hepatoma Treatment.

Int J Nanomedicine. 2024

[3]
Synthesis, characterization and in vitro/in vivo evaluation of novel reduction-sensitive hybrid nano-echinus-like nanomedicine.

Artif Cells Nanomed Biotechnol. 2018-4-27

[4]
Multifunctional redox-responsive and CD44 receptor targeting polymer-drug nanomedicine based curcumin and alendronate: synthesis, characterization and in vitro evaluation.

Artif Cells Nanomed Biotechnol. 2018

[5]
Amphiphilic Poly(ethylene glycol)-Cholesterol Conjugate: Stable Micellar Formulation for Efficient Loading and Effective Intracellular Delivery of Curcumin.

ACS Appl Bio Mater. 2025-2-17

[6]
Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA.

Biomater Sci. 2016-1

[7]
Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors.

Int J Nanomedicine. 2016-3-18

[8]
Glutathione-sensitive PEGylated curcumin prodrug nanomicelles: Preparation, characterization, cellular uptake and bioavailability evaluation.

Int J Pharm. 2018-11-22

[9]
Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy.

Int J Nanomedicine. 2019-8-9

[10]
Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration.

Drug Deliv. 2015-11-10

本文引用的文献

[1]
Cancer situation in China: an analysis based on the global epidemiological data released in 2024.

Cancer Commun (Lond). 2025-2

[2]
Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles.

Molecules. 2024-10-13

[3]
New advances in the treatment of intermediate and advanced hepatocellular carcinoma.

Front Oncol. 2024-9-23

[4]
Mitigating Metal-Organic Framework (MOF) Toxicity for Biomedical Applications.

Chem Eng J. 2023-9-1

[5]
Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives.

Signal Transduct Target Ther. 2024-8-2

[6]
Disulfide/α-Amide-Bridged Doxorubicin Dimeric Prodrug: Effect of Aggregation Structures on pH/GSH Dual-Triggered Drug Release.

Langmuir. 2024-5-28

[7]
Mortality Burden of Liver Cancer in China: An Observational Study From 2008 to 2020.

J Clin Transl Hepatol. 2024-4-28

[8]
Recent advances of novel targeted drug delivery systems based on natural medicine monomers against hepatocellular carcinoma.

Heliyon. 2024-1-18

[9]
Hepatic Stellate Cell-Targeting Micelle Nanomedicine for Early Diagnosis and Treatment of Liver Fibrosis.

Adv Healthc Mater. 2024-5

[10]
Evaluation of the liver targeting and anti‑liver cancer activity of artesunate‑loaded and glycyrrhetinic acid‑coated nanoparticles.

Exp Ther Med. 2023-9-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索