Al-Tawil Basheer, Candemir Adem, Jung Magnus, Al-Hamadi Ayoub
Neuro-Information Technology, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany.
Sensors (Basel). 2025 Apr 10;25(8):2408. doi: 10.3390/s25082408.
This paper presents an enhanced Simultaneous Localization and Mapping (SLAM) framework for mobile robot navigation. It integrates RGB-D cameras and 2D LiDAR sensors to improve both mapping accuracy and localization efficiency. We propose a data fusion strategy where RGB-D point clouds are projected into 2D and denoised alongside LiDAR data. Late fusion is applied to combine the processed data, making it ready for use in the SLAM system. Additionally, we propose the enhanced Gmapping (EGM) algorithm by adding adaptive resampling and degeneracy handling to address particle depletion issues, thereby improving the robustness of the localization process. The system is evaluated through simulations and a small-scale real-world implementation using a Tiago robot. In simulations, the system was tested in environments of varying complexity and compared against state-of-the-art methods such as RTAB-Map SLAM and our EGM. Results show general improvements in navigation compared to state-of-the-art approaches: in simulation, an 8% reduction in traveled distance, a 13% reduction in processing time, and a 15% improvement in goal completion. In small-scale real-world tests, the EGM showed slight improvements over the classical GM method: a 3% reduction in traveled distance and a 9% decrease in execution time.
本文提出了一种用于移动机器人导航的增强型同步定位与地图构建(SLAM)框架。它集成了RGB-D相机和二维激光雷达传感器,以提高地图绘制精度和定位效率。我们提出了一种数据融合策略,将RGB-D点云投影到二维空间并与激光雷达数据一起去噪。采用后期融合来合并处理后的数据,使其可用于SLAM系统。此外,我们通过添加自适应重采样和退化处理来解决粒子耗尽问题,从而提高定位过程的鲁棒性,提出了增强型Gmapping(EGM)算法。该系统通过使用Tiago机器人进行模拟和小规模实际应用进行评估。在模拟中,该系统在不同复杂程度的环境中进行测试,并与诸如RTAB-Map SLAM和我们的EGM等最先进方法进行比较。结果表明,与最先进方法相比,导航方面总体有所改进:在模拟中,行进距离减少8%,处理时间减少13%,目标完成率提高15%。在小规模实际测试中,EGM比经典GM方法略有改进:行进距离减少3%,执行时间减少9%。