Al-Tawil Basheer, Hempel Thorsten, Abdelrahman Ahmed, Al-Hamadi Ayoub
Institute for Information Technology and Communications, Otto-von-Guericke-University, Magdeburg, Germany.
Front Robot AI. 2024 Apr 10;11:1347985. doi: 10.3389/frobt.2024.1347985. eCollection 2024.
Visual simultaneous localization and mapping (V-SLAM) plays a crucial role in the field of robotic systems, especially for interactive and collaborative mobile robots. The growing reliance on robotics has increased complexity in task execution in real-world applications. Consequently, several types of V-SLAM methods have been revealed to facilitate and streamline the functions of robots. This work aims to showcase the latest V-SLAM methodologies, offering clear selection criteria for researchers and developers to choose the right approach for their robotic applications. It chronologically presents the evolution of SLAM methods, highlighting key principles and providing comparative analyses between them. The paper focuses on the integration of the robotic ecosystem with a robot operating system (ROS) as Middleware, explores essential V-SLAM benchmark datasets, and presents demonstrative figures for each method's workflow.
视觉同步定位与地图构建(V-SLAM)在机器人系统领域发挥着至关重要的作用,特别是对于交互式和协作式移动机器人而言。在现实世界应用中,对机器人技术日益增长的依赖增加了任务执行的复杂性。因此,已经出现了几种类型的V-SLAM方法来促进和简化机器人的功能。这项工作旨在展示最新的V-SLAM方法,为研究人员和开发人员提供明确的选择标准,以便为他们的机器人应用选择合适的方法。它按时间顺序呈现了SLAM方法的演变,突出关键原理并对它们进行比较分析。本文重点关注将机器人生态系统与作为中间件的机器人操作系统(ROS)进行集成,探索重要的V-SLAM基准数据集,并给出每种方法工作流程的演示图。