Yang Hua, Shu Zhan, Li Zhonger
College of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China.
Sensors (Basel). 2025 Apr 12;25(8):2438. doi: 10.3390/s25082438.
The integration of intermittent wind power into modern grids necessitates highly accurate forecasting models to ensure stability and efficiency. To address the limitations of traditional backpropagation (BP) neural networks, such as slow convergence and susceptibility to local optima, this study proposes a novel hybrid framework: the Multi-Strategy Coati Optimization Algorithm (SZCOA)-optimized BP neural network (SZCOA-BP). The SZCOA integrates three innovative strategies-a population position update mechanism for global exploration, an olfactory tracing strategy to evade local optima, and a soft frost search strategy for refined exploitation-to enhance the optimization efficiency and robustness of BP networks. Evaluated on the CEC2017 benchmark, the SZCOA outperformed state-of-the-art algorithms, including ICOA, DBO, and PSO, achieving superior convergence speed and solution accuracy. Applied to a real-world wind power dataset (912 samples from Alibaba Cloud Tianchi), the SZCOA-BP model attained an ² of 94.437% and reduced the MAE to 10.948, significantly surpassing the standard BP model (²: 81.167%, MAE: 18.891). Comparative analyses with COA-BP, BWO-BP, and other hybrid models further validated its dominance in prediction accuracy and stability. The proposed framework not only advances wind power forecasting but also offers a scalable solution for optimizing complex renewable energy systems, supporting global efforts toward sustainable energy transitions.
将间歇性风力发电并入现代电网需要高精度的预测模型,以确保稳定性和效率。为解决传统反向传播(BP)神经网络的局限性,如收敛速度慢和易陷入局部最优,本研究提出一种新型混合框架:多策略食蟹猴优化算法(SZCOA)优化的BP神经网络(SZCOA-BP)。SZCOA集成了三种创新策略——用于全局探索的种群位置更新机制、用于规避局部最优的嗅觉追踪策略以及用于精细开发的软霜搜索策略——以提高BP网络的优化效率和鲁棒性。在CEC2017基准测试中,SZCOA优于包括ICOA、DBO和PSO在内的现有算法,实现了更高的收敛速度和求解精度。应用于真实世界的风电数据集(来自阿里云天池的912个样本)时,SZCOA-BP模型的R²达到94.437%,平均绝对误差(MAE)降至10.948,显著超过标准BP模型(R²:81.167%,MAE:18.891)。与COA-BP、BWO-BP和其他混合模型的对比分析进一步验证了其在预测准确性和稳定性方面的优势。所提出的框架不仅推动了风力发电预测,还为优化复杂的可再生能源系统提供了可扩展的解决方案,支持全球可持续能源转型的努力。