Jia Chuan, He Ling, Liu Dan, Fu Shengwei
Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou, China.
Sci Rep. 2024 Dec 28;14(1):30717. doi: 10.1038/s41598-024-76545-0.
In response to the challenges faced by the Coati Optimization Algorithm (COA), including imbalance between exploration and exploitation, slow convergence speed, susceptibility to local optima, and low convergence accuracy, this paper introduces an enhanced variant termed the Adaptive Coati Optimization Algorithm (ACOA). ACOA achieves a balanced exploration-exploitation trade-off through refined exploration strategies and developmental methodologies. It integrates chaos mapping to enhance randomness and global search capabilities and incorporates a dynamic antagonistic learning approach employing random protons to mitigate premature convergence, thereby enhancing algorithmic robustness. Additionally, to prevent entrapment in local optima, ACOA introduces an Adaptive Levy Flight strategy to maintain population diversity, thereby improving convergence accuracy. Furthermore, underperforming individuals are eliminated using a cosine disturbance-based differential evolution strategy to enhance the overall quality of the population. The efficacy of ACOA is assessed across four dimensions: population diversity, exploration-exploitation balance, convergence characteristics, and diverse strategy variations. Ablation experiments further validate the effectiveness of individual strategy modules. Experimental results on CEC-2017 and CEC-2022 benchmarks, along with Wilcoxon rank-sum tests, demonstrate superior performance of ACOA compared to COA and other state-of-the-art optimization algorithms. Finally, ACOA's applicability and superiority are reaffirmed through experimentation on five real-world engineering challenges and a complex urban three-dimensional unmanned aerial vehicle (UAV) path planning problem.
针对浣熊优化算法(COA)面临的挑战,包括勘探与开发之间的不平衡、收敛速度慢、易陷入局部最优以及收敛精度低等问题,本文提出了一种增强变体算法,即自适应浣熊优化算法(ACOA)。ACOA通过优化勘探策略和发展方法,实现了勘探与开发之间的平衡权衡。它集成了混沌映射以增强随机性和全局搜索能力,并采用一种利用随机质子的动态对抗学习方法来减轻早熟收敛,从而提高算法的鲁棒性。此外,为防止陷入局部最优,ACOA引入了自适应莱维飞行策略以保持种群多样性,从而提高收敛精度。此外,使用基于余弦扰动的差分进化策略淘汰表现不佳的个体,以提高种群的整体质量。从种群多样性、勘探与开发平衡、收敛特性以及多种策略变体这四个维度评估了ACOA的有效性。消融实验进一步验证了各个策略模块的有效性。在CEC - 2017和CEC - 2022基准测试上的实验结果,以及威尔科克森秩和检验表明,与COA和其他先进优化算法相比,ACOA具有更优的性能。最后,通过对五个实际工程挑战和一个复杂的城市三维无人机(UAV)路径规划问题进行实验,再次证实了ACOA的适用性和优越性。