Suppr超能文献

揭示植物耐盐机制:将KANMB机器学习模型与代谢组学和转录组学分析相结合

Unveiling Salt Tolerance Mechanisms in Plants: Integrating the KANMB Machine Learning Model With Metabolomic and Transcriptomic Analysis.

作者信息

Chen Shoukun, Zhang Hao, Gao Shuqiang, He Kunhui, Yu Tingxi, Gao Shang, Wang Jiankang, Li Huihui

机构信息

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

Nanfan Research Institute, CAAS, Sanya, Hainan, 572024, China.

出版信息

Adv Sci (Weinh). 2025 Jun;12(23):e2417560. doi: 10.1002/advs.202417560. Epub 2025 Apr 26.

Abstract

Salt stress presents a substantial threat to cereal crop productivity, especially in coastal agricultural regions where salinity levels are high. Addressing this challenge requires innovative approaches to uncover genetic resources that support molecular breeding of salt-tolerant crops. In this study, a novel machine learning model, KANMB is introduced, designed to analyze integrated multi-omics data from the natural halophyte Spartina alterniflora under various NaCl concentrations. Using KANMB, 226 metabolic biomarkers significantly linked to salt stress responses, grounded in metabolomic and transcriptomic profiles are identified. These biomarkers correlate with metabolic pathways associated with salt tolerance, providing insight into the underlying biochemical mechanisms. A co-expression analysis further highlights the MYB gene SaMYB35 as a pivotal regulator in the flavonoid biosynthesis pathway under salt stress. When overexpressed SaMYB35 in rice (ZH11) grown under high salinity, it triggers the upregulation of key flavonoid biosynthetic genes, elevates flavonoid content, and enhances salt tolerance compared to wild-type plants. The findings from this study offer a valuable genetic toolkit for breeding salt-tolerant cereal varieties and demonstrate the power of machine learning in accelerating biomarker discovery for stress resilience in non-model plant species.

摘要

盐胁迫对谷类作物的生产力构成了重大威胁,尤其是在盐度较高的沿海农业地区。应对这一挑战需要创新方法来发掘支持耐盐作物分子育种的遗传资源。在本研究中,引入了一种新型机器学习模型KANMB,旨在分析来自天然盐生植物互花米草在不同NaCl浓度下的综合多组学数据。使用KANMB,基于代谢组学和转录组学图谱,鉴定出226种与盐胁迫反应显著相关的代谢生物标志物。这些生物标志物与耐盐相关的代谢途径相关,为潜在的生化机制提供了见解。共表达分析进一步突出了MYB基因SaMYB35是盐胁迫下黄酮类生物合成途径中的关键调节因子。在高盐度条件下生长的水稻(ZH11)中过表达SaMYB35时,与野生型植株相比,它会触发关键黄酮类生物合成基因的上调,提高黄酮类含量,并增强耐盐性。本研究的结果为培育耐盐谷类品种提供了宝贵的遗传工具包,并证明了机器学习在加速非模式植物物种抗逆性生物标志物发现方面的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验