Suppr超能文献

利用机器学习基于脑结构完整性和其他特征预测轻度认知障碍和阿尔茨海默病的进展。

Predicting the progression of MCI and Alzheimer's disease on structural brain integrity and other features with machine learning.

作者信息

Mieling Marthe, Yousuf Mushfa, Bunzeck Nico

机构信息

Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.

Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.

出版信息

Geroscience. 2025 Apr 26. doi: 10.1007/s11357-025-01626-5.

Abstract

Machine learning (ML) on structural MRI data shows high potential for classifying Alzheimer's disease (AD) progression, but the specific contribution of brain regions, demographics, and proteinopathy remains unclear. Using Alzheimer's Disease Neuroimaging Initiative (ADNI) data, we applied an extreme gradient-boosting algorithm and SHAP (SHapley Additive exPlanations) values to classify cognitively normal (CN) older adults, those with mild cognitive impairment (MCI) and AD dementia patients. Features included structural MRI, CSF status, demographics, and genetic data. Analyses comprised one cross-sectional multi-class classification (CN vs. MCI vs. AD dementia, n = 568) and two longitudinal binary-class classifications (CN-to-MCI converters vs. CN stable, n = 92; MCI-to-AD converters vs. MCI stable, n = 378). All classifications achieved 70-77% accuracy and 61-83% precision. Key features were CSF status, hippocampal volume, entorhinal thickness, and amygdala volume, with a clear dissociation: hippocampal properties contributed to the conversion to MCI, while the entorhinal cortex characterized the conversion to AD dementia. The findings highlight explainable, trajectory-specific insights into AD progression.

摘要

基于结构磁共振成像(MRI)数据的机器学习(ML)在阿尔茨海默病(AD)进展分类方面显示出巨大潜力,但脑区、人口统计学特征和蛋白病的具体作用仍不明确。利用阿尔茨海默病神经影像学倡议(ADNI)的数据,我们应用了极端梯度提升算法和SHAP(SHapley加性解释)值,对认知正常(CN)的老年人、轻度认知障碍(MCI)患者和AD痴呆患者进行分类。特征包括结构MRI、脑脊液状态、人口统计学特征和基因数据。分析包括一项横断面多类分类(CN与MCI与AD痴呆,n = 568)和两项纵向二元分类(从CN转变为MCI者与稳定的CN者,n = 92;从MCI转变为AD者与稳定的MCI者,n = 378)。所有分类的准确率达到70 - 77%,精确率达到61 - 83%。关键特征是脑脊液状态、海马体积、内嗅皮层厚度和杏仁核体积,且存在明显差异:海马特性有助于向MCI的转变,而内嗅皮层则是向AD痴呆转变的特征。这些发现突出了对AD进展的可解释的、特定轨迹的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验