Dhar Tushar, Parray Roaf Ahmad, Bashyal Bishnu Maya, Singh Awani Kumar, Dhanger Parveen, Khura Tapan Kumar, Kumar Rajeev, Hasan Murtaza, Yeasin Md
Ph.D. Scholar, Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
Scientist, Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
Fungal Genet Biol. 2025 May;178:103984. doi: 10.1016/j.fgb.2025.103984. Epub 2025 Apr 24.
Early blight, caused by Alternaria alternata, poses a critical challenge to tomato (Solanum lycopersicum L.) production, causing significant yield losses worldwide. Despite advancements in plant disease detection, existing methods often lack the robustness, speed, and accuracy needed for real-time, field-level applications, particularly under variable environmental conditions. This study addresses these gaps by leveraging transfer learning with optimized MobileNet architectures to develop a highly efficient and generalizable detection system. A diverse dataset of 6451 tomato leaf images, encompassing healthy and varying disease severity levels (low, medium, high) under multiple lighting conditions, was curated to improve model performance across real-world scenarios. Four MobileNet variants-MobileNet, MobileNet V2, MobileNet V3 Small, and MobileNet V3 Large-were fine-tuned, with MobileNet V3 Large achieving the highest classification accuracy of 99.88 %, an F1 score of 0.996, and a rapid inference time of 67 milliseconds. These attributes make it ideal for real-time IoT applications, including smartphone-based disease monitoring, automated precision spraying, and smart agricultural systems. To further validate diseased samples, internal transcribed spacer (ITS) sequence analysis confirmed A. alternata with over 98 % similarity to known isolates in the NCBI database. This study bridges critical research gaps by providing a robust, non-destructive, and real-time solution for early blight severity assessment, enabling timely, targeted interventions to mitigate crop losses in precision agriculture.
早疫病由链格孢菌引起,对番茄(Solanum lycopersicum L.)生产构成重大挑战,在全球范围内造成显著的产量损失。尽管植物病害检测技术有所进步,但现有方法往往缺乏实时实地应用所需的鲁棒性、速度和准确性,特别是在多变的环境条件下。本研究通过利用优化的MobileNet架构进行迁移学习,来开发一个高效且通用的检测系统,以弥补这些差距。精心整理了一个包含6451张番茄叶片图像的多样化数据集,涵盖了多种光照条件下的健康叶片以及不同病害严重程度(低、中、高)的叶片,以提高模型在实际场景中的性能。对四种MobileNet变体——MobileNet、MobileNet V2、MobileNet V3 Small和MobileNet V3 Large进行了微调,其中MobileNet V3 Large实现了最高的分类准确率99.88%、F1分数0.996以及67毫秒的快速推理时间。这些特性使其非常适合实时物联网应用,包括基于智能手机的病害监测、自动精准喷洒和智能农业系统。为了进一步验证患病样本,内部转录间隔区(ITS)序列分析确认了链格孢菌,其与NCBI数据库中已知分离株的相似度超过98%。本研究通过提供一种强大、无损且实时的早疫病严重程度评估解决方案,弥合了关键的研究差距,能够在精准农业中及时进行有针对性的干预,以减轻作物损失。