Suppr超能文献

制定社区层面老年友好型社区指标:日本老年学评估研究

Developing an indicator for community-level age-friendly communities: the Japan gerontological evaluation study.

作者信息

Fujihara Satoko, Noguchi Taiji, Ide Kazushige, Jeong Seungwon, Kondo Katsunori, Ojima Toshiyuki

机构信息

Research Department Institute for Health Economics and Policy, Association for Health Economics Research and Social Insurance and Welfare, 1-21-19. Toranomon, Minato-ku, Tokyo, 101-0001, Japan.

Center for Preventive Medical Sciences, Chiba University, Chiba, Japan.

出版信息

BMC Geriatr. 2025 Apr 26;25(1):285. doi: 10.1186/s12877-025-05919-4.

Abstract

BACKGROUND

Age-friendly communities (AFCs) aim to create inclusive societies for older adults. The World Health Organization (WHO) highlights dementia considerations in AFC development; however, few community-level indicators include these elements. This study aimed to develop a community-level AFC indicator incorporating dementia-friendly elements based on WHO guidelines and to test its validity and reliability.

METHODS

A repeated cross-sectional design used data from the 2016 and 2019 waves of the Japan Gerontological Evaluation Study (JAGES) covering 61 school districts in 16 municipalities (45,162 individuals aged 65 and older in 2016 and 39,313 in 2019). The 2016 and 2019 datasets served as the development and retest samples, respectively. The item selection process involved extracting indicators from the JAGES survey items that aligned with WHO guidelines as well as those based on prior research on dementia-friendly communities (DFCs). Following expert consultations, 23 candidate items were identified. Data were aggregated at the school district level. Exploratory factor analysis (EFA) was conducted on the 2016 data to derive the factor structure, and confirmatory factor analysis (CFA) was used to assess model fit. The reproducibility of the factor structure was evaluated using EFA on the 2019 retest sample. Internal consistency and test-retest reliability were assessed.

RESULTS

The final 17-item indicator comprised three subscales: Social inclusion and dementia-friendliness (7 items, α = 0.86; e.g., Sense of belonging to the community), Social engagement and communication (5 items, α = 0.78; e.g., Participation in hobby groups), and Age-friendly physical environment (5 items, α = 0.82; e.g., Accessibility of barrier-free streets). The CFA showed an unsatisfactory model fit; however, test-retest reliability was adequate (r = 0.71-0.79; ICC = 0.67-0.78).

CONCLUSIONS

A valid and reliable 17-item community-level indicator was developed, aligning with the WHO framework and incorporating dementia-friendly elements. This indicator is a valuable tool for monitoring, evaluation, and inter-community comparisons, aiding the development of AFCs and DFCs in aging societies like Japan. Additionally, this indicator can be adapted for other high-income countries with similar socioeconomic backgrounds, healthcare systems, and community structures, providing a useful tool for age- and dementia-friendly initiatives.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

老年友好型社区(AFCs)旨在为老年人创建包容性社会。世界卫生组织(WHO)强调在老年友好型社区发展中要考虑痴呆症因素;然而,很少有社区层面的指标包含这些要素。本研究旨在根据WHO指南制定一个包含痴呆友好型要素的社区层面的老年友好型社区指标,并测试其有效性和可靠性。

方法

采用重复横断面设计,使用2016年和2019年两轮日本老年学评估研究(JAGES)的数据,该研究覆盖16个城市的61个学区(2016年有45162名65岁及以上个体,2019年有39313名)。2016年和2019年的数据集分别作为开发样本和重测样本。指标选择过程包括从JAGES调查项目中提取与WHO指南一致的指标以及基于先前对痴呆友好型社区(DFCs)研究的指标。经过专家咨询,确定了23个候选项目。数据在学区层面进行汇总。对2016年的数据进行探索性因子分析(EFA)以得出因子结构,并用验证性因子分析(CFA)评估模型拟合度。使用2019年重测样本的EFA评估因子结构的可重复性。评估内部一致性和重测信度。

结果

最终的17项指标包括三个子量表:社会包容与痴呆友好(7项,α = 0.86;例如,社区归属感)、社会参与和沟通(5项,α = 0.78;例如,参与兴趣小组)以及老年友好型物理环境(5项,α = 0.82;例如,无障碍街道的可达性)。CFA显示模型拟合度不理想;然而,重测信度足够(r = 0.71 - 0.79;ICC = 0.67 - 0.78)。

结论

开发了一个有效且可靠的17项社区层面指标,与WHO框架一致并纳入了痴呆友好型要素。该指标是监测、评估和社区间比较的宝贵工具,有助于日本等老龄化社会中AFCs和DFCs的发展。此外,该指标可适用于具有类似社会经济背景、医疗系统和社区结构的其他高收入国家,为老年友好和痴呆友好倡议提供有用工具。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa9b/12032818/706cb89cf7a2/12877_2025_5919_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验