Carneiro Leonardo Fortuna, Fernandes Nicolas Tadeu Domingues, Costa Junior Esly Ferreira da, Matencio Tulio
Postgraduate Program in Chemical Engineering, PPGEQ-UFMG, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil.
Department of Chemistry, DEQ/ICEX-UFMG, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil.
ACS Omega. 2025 Apr 10;10(15):15381-15392. doi: 10.1021/acsomega.4c11603. eCollection 2025 Apr 22.
Using parameter estimation along with semiempirical fuel cell models is a promising strategy to obtain simple yet accurate models for proton-exchange membrane fuel cells. This work compares a model using a common semiempirical description of the activation overvoltage with one based on an agglomerate model. The parameters are estimated by nonlinear regression and the resulting optimization problem is solved using a parallel implementation of the genetic algorithm. The results indicate that the model incorporating the agglomerate description offers parameters with more straightforward physical interpretations and achieves superior fits to the experimental polarization data, both for individual curve fitting and when multiple curves are fitted simultaneously. Moreover, an analysis of the overvoltages shows that it is more robust in modeling reactant depletion effects at high current densities, attesting to its ability to represent relevant phenomena reasonably. Thus, further usage of parameter estimation along with agglomerate models is recommended as a useful strategy to describe fuel cells with limited data availability.
将参数估计与半经验燃料电池模型相结合,是一种很有前景的策略,可用于获得简单而准确的质子交换膜燃料电池模型。这项工作比较了一个使用常见的活化过电压半经验描述的模型和一个基于团聚体模型的模型。通过非线性回归估计参数,并使用遗传算法的并行实现来解决由此产生的优化问题。结果表明,包含团聚体描述的模型提供了具有更直接物理解释的参数,并且无论是对于单个曲线拟合还是同时拟合多条曲线,都能对实验极化数据实现更好的拟合。此外,对过电压的分析表明,该模型在模拟高电流密度下的反应物耗尽效应时更稳健,证明了其合理表示相关现象的能力。因此,建议进一步将参数估计与团聚体模型结合使用,作为在数据可用性有限的情况下描述燃料电池的一种有用策略。