Suppr超能文献

基于改进的大猩猩群体算法的燃料电池参数估计。

Fuel-cell parameter estimation based on improved gorilla troops technique.

机构信息

Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez, 43533, Egypt.

Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.

出版信息

Sci Rep. 2023 May 29;13(1):8685. doi: 10.1038/s41598-023-35581-y.

Abstract

The parameter extraction of the proton exchange membrane fuel cells (PEMFCs) is an active study area over the past few years to achieve accurate current/voltage (I/V) curves. This work proposes an advanced version of an improved gorilla troops technique (IGTT) to precisely estimate the PEMFC's model parameters. The GTT's dual implementation of the migration approach enables boosting the exploitation phase and preventing becoming trapped in the local minima. Besides, a Tangent Flight Strategy (TFS) is incorporated with the exploitation stage for efficiently searching the search space. Using two common PEMFCs stacks of BCS 500W, and Modular SR-12, the developed IGTT is effectively applied. Furthermore, the two models are evaluated under varied partial temperature and pressure. In addition to this, different new recently inspired optimizers are employed for comparative validations namely supply demand optimization (SDO), flying foxes optimizer (FFO) and red fox optimizer (RFO). Also, a comparative assessment of the developed IGTT and the original GTT are tested to ten unconstrained benchmark functions following to the Congress on Evolutionary Computation (CEC) 2017. The proposed IGTT outperforms the standard GTT, grey wolf algorithm (GWA) and Particle swarm optimizer (PSO) in 92.5%, 87.5% and 92.5% of the statistical indices. Moreover, the viability of the IGTT is proved in comparison to various previously published frameworks-based parameter's identification of PEMFCs stacks. The obtained sum of squared errors (SSE) and the standard deviations (STD) are among the difficult approaches in this context and are quite competitive. For the PEMFCs stacks being studied, the developed IGTT achieves exceedingly small SSE values of 0.0117 and 0.000142 for BCS 500 and SR-12, respectively. Added to that, the IGTT gives superior performance compared to GTT, SDO, FFO and RFO obtaining the smallest SSE objective with the least STD ever.

摘要

质子交换膜燃料电池(PEMFC)的参数提取是过去几年中一个活跃的研究领域,旨在实现精确的电流/电压(I/V)曲线。本工作提出了一种改进的大猩猩部落技术(IGTT)的高级版本,以精确估计 PEMFC 的模型参数。GTT 的迁移方法的双重实现可以增强开发阶段并防止陷入局部最小值。此外,切线飞行策略(TFS)与开发阶段结合使用,可有效地搜索搜索空间。使用 BCS 500W 和 Modular SR-12 的两个常见 PEMFC 堆栈,开发了 IGTT。此外,在不同的局部温度和压力下评估了这两个模型。除此之外,还采用了不同的新启发式优化器进行比较验证,即供需优化(SDO)、飞狐优化器(FFO)和红狐优化器(RFO)。此外,还根据 2017 年进化计算大会(CEC)的 10 个无约束基准函数测试了开发的 IGTT 和原始 GTT 的比较评估。与标准 GTT、灰狼算法(GWA)和粒子群优化器(PSO)相比,所提出的 IGTT 在 92.5%、87.5%和 92.5%的统计指标中表现更好。此外,与之前基于 PEMFC 堆栈的参数识别的各种已发布框架相比,证明了 IGTT 的可行性。在这种情况下,均方误差(SSE)和标准差(STD)的总和是困难的方法之一,并且具有很强的竞争力。对于所研究的 PEMFC 堆栈,开发的 IGTT 分别为 BCS 500 和 SR-12 实现了非常小的 SSE 值 0.0117 和 0.000142。此外,与 GTT、SDO、FFO 和 RFO 相比,IGTT 具有卓越的性能,获得了最小的 SSE 目标和最小的 STD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafb/10227001/f7866e769684/41598_2023_35581_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验