Tabar Fatemeh Ahmadi, Lowdon Joseph W, Frigoli Margaux, Crapnell Robert D, Cleij Thomas J, Diliën Hanne, Banks Craig E, Eersels Kasper, van Grinsven Bart, Wagner Patrick
Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, Leuven B-3001, Belgium.
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands.
ACS Omega. 2025 Apr 12;10(15):15018-15028. doi: 10.1021/acsomega.4c10473. eCollection 2025 Apr 22.
While existing polyfluoroalkyl substances (PFAS) detection techniques are highly sensitive, their broader implementation is limited by the need for expensive equipment, lengthy analysis times, and specialized personnel. This underscores the need for fast, reliable, cost-effective, and accessible PFAS detection methods to avoid exposure to these pollutants and expedite the remediation of contaminated environments. Currently, portable electrochemical sensors for contaminant detection are gaining significant attention. This study focuses on developing an electrochemical sensor for on-site perfluorooctanoic acid (PFOA) detection utilizing screen-printed electrodes (SPEs) modified with molecularly imprinted polymers (MIPs). The sensor's performance is evaluated using electrochemical impedance spectroscopy (EIS), with the electrochemical signals for PFOA detection arising from the specific interactions between MIPs and PFOA. The sensor exhibits a linear response to PFOA in phosphate-buffered saline within a concentration range of 0.1 nM to 10 μM, a detection limit of 19 ± 1 pM, and a quantification limit of 42 ± 3 nM. The selectivity of the sensor is assessed by measuring its response to four different PFAS compounds. Additionally, its real-world applicability is tested by analyzing the EIS response in tap and river water samples. The developed sensor, which combines an easy-to-use dipstick format with readily prepared SPEs, has the potential for large-scale production for PFOA detection.
虽然现有的多氟烷基物质(PFAS)检测技术灵敏度很高,但其更广泛的应用受到昂贵设备、冗长分析时间和专业人员需求的限制。这凸显了需要快速、可靠、经济高效且易于使用的PFAS检测方法,以避免接触这些污染物并加快对受污染环境的修复。目前,用于污染物检测的便携式电化学传感器正受到广泛关注。本研究专注于开发一种利用分子印迹聚合物(MIP)修饰的丝网印刷电极(SPE)进行现场全氟辛酸(PFOA)检测的电化学传感器。使用电化学阻抗谱(EIS)评估该传感器的性能,PFOA检测的电化学信号源于MIP与PFOA之间的特异性相互作用。该传感器在磷酸盐缓冲盐水中对PFOA的浓度范围为0.1 nM至10 μM时呈现线性响应,检测限为19±1 pM,定量限为42±3 nM。通过测量其对四种不同PFAS化合物的响应来评估传感器的选择性。此外,通过分析自来水和河水样品中的EIS响应来测试其实际适用性。所开发的传感器将易于使用的试纸形式与易于制备的SPE相结合,具有大规模生产用于PFOA检测的潜力。