Suppr超能文献

叔胺选择对金纳米颗粒催化剂上一氧化碳加氢生成甲酸的影响。

Effect of Tertiary Amine Selection on CO to Formic Acid Hydrogenation with the Au-np Catalyst.

作者信息

de Leeuw den Bouter Anouk W N, Meijer Luca M P, Brito Larissa, Miquelot Adeline, Olivier Pierre, van der Schaaf John

机构信息

Sustainable Process Engineering, Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, Eindhoven 5612 AZ, The Netherlands.

Lab Hydrogen, ENGIE Lab CRIGEN, 4 Rue Josephine Baker, N/A, Stains 93240, France.

出版信息

Ind Eng Chem Res. 2025 Apr 10;64(16):8109-8118. doi: 10.1021/acs.iecr.4c04902. eCollection 2025 Apr 23.

Abstract

Over the past decades, the production and storage of molecular hydrogen has been identified as a key solution to the current global warming crises. Here, formic acid has gained considerable traction as a possible liquid organic hydrogen carrier. One of the possible production methods is the direct hydrogenation of CO. However, the reaction is highly unfavorable from a thermodynamic point of view and can be made slightly favorable using tertiary amines. The addition of tertiary amines leads to adduct formation, which drives the reaction toward the product side through reduction of the formic acid activity in the bulk liquid. However, currently, the competitiveness of the process is severely hindered by the challenging and energy-intensive formic acid purification due to the formation of azeotropes between formic acid and the low-boiling tertiary amines. Additionally, the reaction rates are hampered by the limited solubility of the adduct and nonbinding amine leading to the necessity of additional solvents. Steric hindrance and the p of the tertiary amine were identified as key parameters influencing both the observed kinetic rates and the CO conversion. The usage of solventless polar amines such as diethylethanolamine allowed for FA productivity up to 5× that of the benchmark triethylamine system. Catalyst deactivation of the Au/TiO catalyst was observed for all amines studied within this work, and the deactivation mechanism was shown to be sintering of the Au nanoparticles with no significant leaching, morphological changes, or oxidation of the Au species observed.

摘要

在过去几十年中,分子氢的生产和储存已被视为解决当前全球变暖危机的关键方案。在此,甲酸作为一种可能的液态有机氢载体已获得了相当大的关注。一种可能的生产方法是CO的直接加氢。然而,从热力学角度来看,该反应极不利于进行,使用叔胺可使其稍微变得有利。叔胺的加入会导致加合物形成,通过降低本体液体中甲酸的活性,将反应推向产物一侧。然而,目前,由于甲酸与低沸点叔胺之间形成共沸物,使得甲酸的纯化具有挑战性且能源密集,这严重阻碍了该工艺的竞争力。此外,加合物和非键合胺的溶解度有限,导致需要额外的溶剂,从而阻碍了反应速率。空间位阻和叔胺的p被确定为影响观察到的动力学速率和CO转化率的关键参数。使用无溶剂极性胺(如二乙基乙醇胺)可使甲酸的生产率比基准三乙胺系统高出5倍。在这项工作中研究的所有胺类中,均观察到Au/TiO催化剂的失活,并且失活机制显示为Au纳米颗粒的烧结,未观察到明显的浸出、形态变化或Au物种的氧化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf6/12022983/27387ffe7341/ie4c04902_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验