Suppr超能文献

通过综合分析发现用于辅助结直肠癌诊断的DNA甲基化生物标志物

DNA Methylation Biomarker Discovery for Colorectal Cancer Diagnosis Assistance Through Integrated Analysis.

作者信息

Tsai Yi-Hsuan, Lai Yi-Husan, Chen Shu-Jen, Cheng Yi-Chiao, Pai Tun-Wen

机构信息

Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan.

Department of Product Development, ACT Genomics Co., Ltd., Taipei, Taiwan.

出版信息

Cancer Inform. 2025 Apr 15;24:11769351251324545. doi: 10.1177/11769351251324545. eCollection 2025.

Abstract

OBJECTIVE

This study aimed to identify biomarkers for colorectal cancer (CRC) with representative gene functions and high classification accuracy in tissue and blood samples.

METHODS

We integrated CRC DNA methylation profiles from The Cancer Genome Atlas and comorbidity patterns of CRC to select biomarker candidates. We clustered these candidates near the promoter regions into multiple functional groups based on their functional annotations. To validate the selected biomarkers, we applied 3 machine learning techniques to construct models and compare their prediction performances.

RESULTS

The 10 screened genes showed significant methylation differences in both tissue and blood samples. Our test results showed that 3-gene combinations achieved outstanding classification performance. Selecting 3 representative biomarkers from different genetic functional clusters, the combination of , , and exhibited the best performance across the 3 prediction models, achieving a Matthews correlation coefficient > .85 and an F1-score of .9.

CONCLUSIONS

Using integrated DNA methylation analysis, we identified 3 CRC-related biomarkers with remarkable classification performance. These biomarkers can be used to design a practical clinical toolkit for CRC diagnosis assistance and may also serve as candidate biomarkers for further clinical experiments through liquid biopsies.

摘要

目的

本研究旨在鉴定在组织和血液样本中具有代表性基因功能且分类准确性高的结直肠癌(CRC)生物标志物。

方法

我们整合了来自癌症基因组图谱的CRC DNA甲基化谱以及CRC的共病模式,以选择生物标志物候选物。我们根据其功能注释将这些候选物在启动子区域附近聚类为多个功能组。为了验证所选的生物标志物,我们应用了3种机器学习技术来构建模型并比较它们的预测性能。

结果

筛选出的10个基因在组织和血液样本中均显示出显著的甲基化差异。我们的测试结果表明,3基因组合具有出色的分类性能。从不同的基因功能簇中选择3个具有代表性的生物标志物,[此处原文缺失具体基因名称]的组合在3个预测模型中表现最佳,马修斯相关系数>0.85,F1分数为0.9。

结论

通过整合DNA甲基化分析,我们鉴定出3个具有显著分类性能的CRC相关生物标志物。这些生物标志物可用于设计实用的临床工具包以辅助CRC诊断,也可作为通过液体活检进行进一步临床实验的候选生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4844/12033546/0d894a7589d0/10.1177_11769351251324545-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验