Taguchi Kenshiro, Michiyuki Satoru, Tsuji Takumasa, Kotoku Jun'ichi
Graduate Degree Program of Health Data Science, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
Fundamental Research Laboratory, Eiken Chemical Co., Ltd, Tochigi 329-0114, Japan.
Synth Biol (Oxf). 2025 Mar 31;10(1):ysaf007. doi: 10.1093/synbio/ysaf007. eCollection 2025.
Loop-mediated isothermal amplification (LAMP), a DNA amplification technique under isothermal conditions, provides the important benefits of high sensitivity, specificity, rapidity, and simplicity. Maximizing LAMP features necessitates the design of a complex LAMP primer set (LPS) consisting of four primers for six regions of a given target DNA. Furthermore, the LPS of a given target DNA is designed with LPS design support software such as Primer Explorer. However, even if the design is completed, we still must do many experiments and evaluations. Consequently, designing LPS often fails to achieve high performance, including efficient amplification. For this study, we examined LAMP: a generalized linear model to predict DNA amplification from LPS. Using logistic regression with elastic net regularization, we identified factors that strongly affect LPS design. These factors, combined with domain knowledge for LPS design, led to the creation of LAMP kernel variables that are highly essential for high LAMP reaction. LAMP, constructed using logistic regression with LAMP kernel variables, allows classification and performance prediction of LPS with an area under the curve of 0.86. These results suggest that a high LAMP reaction can be predicted using LAMP kernel variables and generalized linear regression model. Moreover, an LPS with high performance can be constructed without experimentation.
环介导等温扩增技术(LAMP)是一种在等温条件下进行DNA扩增的技术,具有高灵敏度、特异性、快速性和简便性等重要优点。要充分发挥LAMP的特性,就需要设计一套复杂的LAMP引物组(LPS),该引物组由针对给定目标DNA六个区域的四种引物组成。此外,给定目标DNA的LPS是使用诸如引物探索者之类的LPS设计支持软件进行设计的。然而,即使设计完成,我们仍必须进行许多实验和评估。因此,设计LPS往往无法实现高性能,包括高效扩增。在本研究中,我们研究了LAMP:一种用于预测LPS DNA扩增的广义线性模型。通过使用带有弹性网络正则化的逻辑回归,我们确定了对LPS设计有强烈影响的因素。这些因素与LPS设计的领域知识相结合,导致创建了对高LAMP反应至关重要的LAMP核心变量。使用带有LAMP核心变量的逻辑回归构建的LAMP,能够对LPS进行分类和性能预测,曲线下面积为0.86。这些结果表明,使用LAMP核心变量和广义线性回归模型可以预测高LAMP反应。此外,无需实验即可构建高性能的LPS。