文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

揭示影响孤独感的细微差别:利用数字行为标记理解大学生的社交孤独感和情感孤独感。

Unmasking Nuances Affecting Loneliness: Using Digital Behavioural Markers to Understand Social and Emotional Loneliness in College Students.

作者信息

Qirtas Malik Muhammad, Zafeiridi Evi, White Eleanor Bantry, Pesch Dirk

机构信息

School of Computer Science and Information Technology, University College Cork, T12 K8AF Cork, Ireland.

School of Applied Social Studies, University College Cork, T12 K8AF Cork, Ireland.

出版信息

Sensors (Basel). 2025 Mar 19;25(6):1903. doi: 10.3390/s25061903.


DOI:10.3390/s25061903
PMID:40293076
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11945615/
Abstract

Loneliness is a global issue which is particularly prevalent among college students, where it poses risks to mental health and academic success. Chronic loneliness can manifest in two primary forms: social loneliness, which is defined by a lack of belonging or a social network, and emotional loneliness, which comes from the absence of deep, meaningful connections. Differentiating between these forms is crucial for designing personalized and targeted interventions. Passive sensing technology offers a promising, unobtrusive approach to detecting loneliness by using behavioural data collected from smartphones and wearables. This study investigates behavioural patterns associated with social and emotional loneliness using passively sensed data from a student population. Our objectives were to (1) identify behavioural patterns linked to social and emotional loneliness, (2) evaluate the predictive power of these patterns for classifying loneliness types, and (3) determine the most significant digital markers used by machine learning models in loneliness prediction. Using statistical analysis, machine learning, and SHAP-based feature importance methods, we identified significant differences in behaviours between socially and Emotionally Lonely students. Specifically, there were distinct differences in phone use and location-based features. Our machine learning analysis shows a strong ability to classify types of loneliness accurately. The XGBoost model achieved the highest accuracy (78.48%) in predicting loneliness. Feature importance analysis found the critical role of phone usage and location-based features in distinguishing between social and emotional loneliness.

摘要

孤独是一个全球性问题,在大学生中尤为普遍,它对心理健康和学业成就构成风险。慢性孤独主要有两种表现形式:社交孤独,其定义为缺乏归属感或社交网络;情感孤独,源于缺乏深厚、有意义的人际关系。区分这些形式对于设计个性化和有针对性的干预措施至关重要。被动传感技术提供了一种有前景的、不引人注意的方法,通过使用从智能手机和可穿戴设备收集的行为数据来检测孤独。本研究使用来自学生群体的被动传感数据调查与社交和情感孤独相关的行为模式。我们的目标是:(1)识别与社交和情感孤独相关的行为模式;(2)评估这些模式对孤独类型分类的预测能力;(3)确定机器学习模型在孤独预测中使用的最重要数字标记。通过统计分析、机器学习和基于SHAP的特征重要性方法,我们确定了社交孤独和情感孤独学生在行为上的显著差异。具体而言,在手机使用和基于位置的特征方面存在明显差异。我们的机器学习分析显示出准确分类孤独类型的强大能力。XGBoost模型在预测孤独方面达到了最高准确率(78.48%)。特征重要性分析发现手机使用和基于位置的特征在区分社交孤独和情感孤独方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/e910ee0fc308/sensors-25-01903-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/251e301ca30d/sensors-25-01903-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/de1ed0b8a776/sensors-25-01903-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/0f18e12a28b5/sensors-25-01903-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/0dc3a74a0a7e/sensors-25-01903-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/e910ee0fc308/sensors-25-01903-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/251e301ca30d/sensors-25-01903-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/de1ed0b8a776/sensors-25-01903-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/0f18e12a28b5/sensors-25-01903-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/0dc3a74a0a7e/sensors-25-01903-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/11945615/e910ee0fc308/sensors-25-01903-g005.jpg

相似文献

[1]
Unmasking Nuances Affecting Loneliness: Using Digital Behavioural Markers to Understand Social and Emotional Loneliness in College Students.

Sensors (Basel). 2025-3-19

[2]
Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data.

JMIR Mhealth Uhealth. 2019-7-24

[3]
The relationship between loneliness and depression among college students: Mining data derived from passive sensing.

Digit Health. 2023-11-6

[4]
Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study.

J Med Internet Res. 2018-6-8

[5]
Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach.

JMIR Mhealth Uhealth. 2021-3-22

[6]
Objective monitoring of loneliness levels using smart devices: A multi-device approach for mental health applications.

PLoS One. 2024

[7]
Loneliness and Social Isolation Detection Using Passive Sensing Techniques: Scoping Review.

JMIR Mhealth Uhealth. 2022-4-12

[8]
Mapping vulnerability factors of chronic emotional and social loneliness: A network analysis.

J Affect Disord. 2025-6-1

[9]
Smartphone-Tracked Digital Markers of Momentary Subjective Stress in College Students: Idiographic Machine Learning Analysis.

JMIR Mhealth Uhealth. 2023-3-23

[10]
Digital Interventions for Reducing Loneliness and Depression in Korean College Students: Mixed Methods Evaluation.

JMIR Form Res. 2024-9-12

本文引用的文献

[1]
Objective monitoring of loneliness levels using smart devices: A multi-device approach for mental health applications.

PLoS One. 2024

[2]
Modeling social interaction dynamics measured with smartphone sensors: An ambulatory assessment study on social interactions and loneliness.

J Soc Pers Relat. 2023-2

[3]
How (Not) to Measure Loneliness: A Review of the Eight Most Commonly Used Scales.

Int J Environ Res Public Health. 2022-8-30

[4]
Loneliness and Social Isolation Detection Using Passive Sensing Techniques: Scoping Review.

JMIR Mhealth Uhealth. 2022-4-12

[5]
Exploring links between social identity, emotion regulation, and loneliness in those with and without a history of mental illness.

Br J Clin Psychol. 2022-9

[6]
Social and emotional loneliness among college students during the COVID-19 pandemic: The predictive role of coping behaviors, social support, and personal resilience.

Perspect Psychiatr Care. 2021-10

[7]
From Local Explanations to Global Understanding with Explainable AI for Trees.

Nat Mach Intell. 2020-1

[8]
Understanding loneliness in the twenty-first century: an update on correlates, risk factors, and potential solutions.

Soc Psychiatry Psychiatr Epidemiol. 2020-6-10

[9]
Digital Biomarkers of Social Anxiety Severity: Digital Phenotyping Using Passive Smartphone Sensors.

J Med Internet Res. 2020-5-29

[10]
Risk factors for loneliness: The high relative importance of age versus other factors.

PLoS One. 2020-2-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索