Suppr超能文献

Unsupervised Recognition of Unknown Objects for Open-World Object Detection.

作者信息

Fang Ruohuan, Pang Guansong, Miao Wenjun, Bai Xiao, Zheng Jin, Ning Xin

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jun;36(6):11340-11354. doi: 10.1109/TNNLS.2025.3559940.

Abstract

Open-world object detection (OWOD) extends object detection problem to a realistic and dynamic scenario, where a detection model is required to be capable of detecting both known and unknown objects and incrementally learning newly introduced knowledge. Current OWOD models detect the unknowns that exhibit similar features to the known objects, but they suffer from a severe label bias problem, i.e., they tend to detect all regions (including unknown object regions) that are dissimilar to the known objects as part of the background. To eliminate the label bias, this article proposes a novel module, namely reconstruction error-based Weibull (REW) model, that learns an unsupervised discriminative model for recognizing true unknown objects based on prior knowledge of object occurrence frequency via Weibull modeling. The resulting model can be further refined by another module of our method, called REW-enhanced object localization network (ROLNet), which iteratively extends pseudo-unknown objects to the unlabeled regions. Experimental results show that our method 1) significantly outperforms the prior SOTA in detecting unknown objects while maintaining competitive performance of detecting known object classes on the MS COCO dataset and 2) achieves better generalization ability on the LVIS and Objects365 datasets. Code is available at https://github.com/frh23333/mepu-owod.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验