Suppr超能文献

揭示血管(R2')对超高场磁共振成像中R2*信号弛豫的主要作用:小鼠脑定量梯度回波的综合分析

Unraveling the major role of vascular (R2') contributions to R2* signal relaxation at ultra-high-field MRI: A comprehensive analysis with quantitative gradient recalled echo in mouse brain.

作者信息

Im Joanna, Xiang Biao, Levasseur Victoria A, Sukstanskii Alexander L, Quirk James D, Kothapalli Satya V V N, Cross Anne H, Yablonskiy Dmitriy A

机构信息

Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.

Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

Magn Reson Med. 2025 Aug;94(2):761-770. doi: 10.1002/mrm.30529. Epub 2025 Apr 28.

Abstract

PURPOSE

Ultra-high-field (UHF) R2* relaxometry is often used for in vivo analysis of biological tissue microstructure without accounting for vascular contributions to R2* signal, that is, the BOLD signal component, and magnetic field inhomogeneities. These effects are especially important at UHF as their contribution to R2* scales linearly with magnetic field. Our study aims to report on the results of separate contributions of R2t* (tissue-specific sub-component) and R2' (vascular BOLD sub-component), corrected for the adverse effects of magnetic field inhomogeneities, to the total R2* signal at in vivo UHF MRI of mouse brain.

METHODS

Four healthy, 8-week-old C57BL/6J mice were imaged in vivo with multi-gradient echo MRI at 9.4 T and analyzed using the quantitative gradient recalled echo (qGRE) approach. A segmentation protocol was established using the Dorr Mouse Brain Atlas and ANTs Syn registration to warp template brain region labels to subject qGRE maps.

RESULTS

By separating R2' contribution from R2* signal, we have established normative R2t* data in mouse brain. Our findings revealed significant contributions of R2' to R2*, with approximately 42% of the R2* signal arising from vascular contributions, thus suggesting the R2t* as a more accurate metric for quantifying tissue microstructural information and its changes in neurodegenerative diseases.

CONCLUSION

qGRE approach allows efficient separation of tissue microstructure-specific (R2t*), vascular BOLD (R2'), and background gradients contributions to the total R2* relaxation at UHF MRI. Due to low concentration of non-heme iron in mouse brain, major contribution to R2t* results from tissue cellular components.

摘要

目的

超高场(UHF)R2* 弛豫测量法常用于生物组织微观结构的体内分析,但未考虑血管对 R2* 信号的贡献,即血氧水平依赖(BOLD)信号成分,以及磁场不均匀性。这些效应在超高场时尤为重要,因为它们对 R2* 的贡献与磁场呈线性关系。我们的研究旨在报告在小鼠脑的体内超高场磁共振成像(MRI)中,经磁场不均匀性不利影响校正后的 R2t*(组织特异性子成分)和 R2'(血管 BOLD 子成分)对总 R2* 信号的单独贡献结果。

方法

对 4 只健康的 8 周龄 C57BL/6J 小鼠在 9.4 T 下进行体内多梯度回波 MRI 成像,并使用定量梯度回波(qGRE)方法进行分析。使用多尔小鼠脑图谱和 ANTs 同步配准建立分割方案,将模板脑区标签映射到受试者的 qGRE 图上。

结果

通过从 R2* 信号中分离出 R2' 的贡献,我们建立了小鼠脑的标准 R2t* 数据。我们的研究结果显示 R2' 对 R2* 有显著贡献,约 42% 的 R2* 信号来自血管贡献,因此表明 R2t* 是量化神经退行性疾病中组织微观结构信息及其变化的更准确指标。

结论

qGRE 方法能够有效分离组织微观结构特异性(R2t*)、血管 BOLD(R2')和背景梯度对超高场 MRI 总 R2* 弛豫的贡献。由于小鼠脑中非血红素铁浓度较低,R2t* 的主要贡献来自组织细胞成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/195b/12137776/2751ec63a217/MRM-94-761-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验