Im Joanna, Xiang Biao, Levasseur Victoria A, Sukstanskii Alexander L, Quirk James D, Kothapalli Satya V V N, Cross Anne H, Yablonskiy Dmitriy A
Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
Magn Reson Med. 2025 Aug;94(2):761-770. doi: 10.1002/mrm.30529. Epub 2025 Apr 28.
Ultra-high-field (UHF) R2* relaxometry is often used for in vivo analysis of biological tissue microstructure without accounting for vascular contributions to R2* signal, that is, the BOLD signal component, and magnetic field inhomogeneities. These effects are especially important at UHF as their contribution to R2* scales linearly with magnetic field. Our study aims to report on the results of separate contributions of R2t* (tissue-specific sub-component) and R2' (vascular BOLD sub-component), corrected for the adverse effects of magnetic field inhomogeneities, to the total R2* signal at in vivo UHF MRI of mouse brain.
Four healthy, 8-week-old C57BL/6J mice were imaged in vivo with multi-gradient echo MRI at 9.4 T and analyzed using the quantitative gradient recalled echo (qGRE) approach. A segmentation protocol was established using the Dorr Mouse Brain Atlas and ANTs Syn registration to warp template brain region labels to subject qGRE maps.
By separating R2' contribution from R2* signal, we have established normative R2t* data in mouse brain. Our findings revealed significant contributions of R2' to R2*, with approximately 42% of the R2* signal arising from vascular contributions, thus suggesting the R2t* as a more accurate metric for quantifying tissue microstructural information and its changes in neurodegenerative diseases.
qGRE approach allows efficient separation of tissue microstructure-specific (R2t*), vascular BOLD (R2'), and background gradients contributions to the total R2* relaxation at UHF MRI. Due to low concentration of non-heme iron in mouse brain, major contribution to R2t* results from tissue cellular components.
超高场(UHF)R2* 弛豫测量法常用于生物组织微观结构的体内分析,但未考虑血管对 R2* 信号的贡献,即血氧水平依赖(BOLD)信号成分,以及磁场不均匀性。这些效应在超高场时尤为重要,因为它们对 R2* 的贡献与磁场呈线性关系。我们的研究旨在报告在小鼠脑的体内超高场磁共振成像(MRI)中,经磁场不均匀性不利影响校正后的 R2t*(组织特异性子成分)和 R2'(血管 BOLD 子成分)对总 R2* 信号的单独贡献结果。
对 4 只健康的 8 周龄 C57BL/6J 小鼠在 9.4 T 下进行体内多梯度回波 MRI 成像,并使用定量梯度回波(qGRE)方法进行分析。使用多尔小鼠脑图谱和 ANTs 同步配准建立分割方案,将模板脑区标签映射到受试者的 qGRE 图上。
通过从 R2* 信号中分离出 R2' 的贡献,我们建立了小鼠脑的标准 R2t* 数据。我们的研究结果显示 R2' 对 R2* 有显著贡献,约 42% 的 R2* 信号来自血管贡献,因此表明 R2t* 是量化神经退行性疾病中组织微观结构信息及其变化的更准确指标。
qGRE 方法能够有效分离组织微观结构特异性(R2t*)、血管 BOLD(R2')和背景梯度对超高场 MRI 总 R2* 弛豫的贡献。由于小鼠脑中非血红素铁浓度较低,R2t* 的主要贡献来自组织细胞成分。