Yang He, Liu Fuxi, Jiang Zhou, Pan Zhongyu, Wei Aofei, Jing Haifeng, Zhang Wei, Zheng Weitao
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China.
Nano Lett. 2025 May 28;25(21):8511-8518. doi: 10.1021/acs.nanolett.5c00896. Epub 2025 Apr 28.
The development of carbon-based dual-ion batteries (DIBs) is essentially limited by the oxidation decomposition of the electrolyte at high voltage and the unsatisfactory stability of the cathode-electrolyte interface (CEI). Herein, to address these notorious issues, we successfully achieved a high-performance DIB by introducing the Tris(trimethylsiloxy)boron (TMSB) additive. It effectively regulated the solvation structure of the original 2 M LiPF-solved EMC electrolyte. As a result, it not only weakens the coordination between the PF anion and EMC solvent but also suppresses EMC decomposition at the cathode interface. Such regulation facilitates the formation of a stable CEI layer enriched with highly ion-conductive inorganic components. Benefitting from the optimized interfacial kinetics, the graphite cathode delivers exceptional stability and rate capability, achieving 87.86% capacity retention after 2000 cycles at 5.2 V and 84.21% capacity retention at 50 C.
碳基双离子电池(DIBs)的发展在本质上受到高压下电解质氧化分解以及阴极-电解质界面(CEI)稳定性不佳的限制。在此,为了解决这些棘手的问题,我们通过引入三(三甲基硅氧基)硼(TMSB)添加剂成功制备了高性能的双离子电池。它有效地调节了原始2 M LiPF6溶解在碳酸甲乙酯(EMC)中的电解质的溶剂化结构。结果,它不仅削弱了PF6-阴离子与EMC溶剂之间的配位作用,还抑制了EMC在阴极界面的分解。这种调节有助于形成富含高离子导电性无机成分的稳定CEI层。受益于优化的界面动力学,石墨阴极具有出色的稳定性和倍率性能,在5.2 V下经过2000次循环后容量保持率达到87.86%,在50 C下容量保持率为84.21%。