Suppr超能文献

面部表情分类主要依赖于中等空间频率。

Facial expression categorization predominantly relies on mid-spatial frequencies.

作者信息

Charbonneau Isabelle, Duncan Justin, Blais Caroline, Guérette Joël, Plouffe-Demers Marie-Pier, Smith Fraser, Fiset Daniel

机构信息

Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, Canada.

Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, Canada; Département de Psychologie, Université du Québec à Montréal, Canada.

出版信息

Vision Res. 2025 Jun;231:108611. doi: 10.1016/j.visres.2025.108611. Epub 2025 Apr 27.

Abstract

Facial expressions are crucial in human communication. Recent decades have seen growing interest in understanding the role of spatial frequencies (SFs) in emotion perception in others. While some studies have suggested a preferential treatment of low versus high SFs, the optimal SFs for recognizing basic facial expressions remain elusive. This study, conducted on Western participants, addresses this gap using two complementary methods: a data-driven method (Exp. 1) without arbitrary SF cut-offs, and a more naturalistic method (Exp. 2) simulating variations in viewing distance. Results generally showed a preponderant role of low over high SFs, but particularly stress that facial expression categorization mostly relies on mid-range SF content (i.e. ∼6-13 cycles per face), often overlooked in previous studies. Optimal performance was observed at short to medium viewing distances (1.2-2.4 m), declining sharply with increased distance, precisely when mid-range SFs were no longer available. Additionally, our data suggest variations in SF tuning profiles across basic facial expressions and nuanced contributions from low and mid SFs in facial expression processing. Most importantly, it suggests that any method that removes mid-SF content has the downfall of offering an incomplete account of SFs diagnosticity for facial expression recognition.

摘要

面部表情在人类交流中至关重要。近几十年来,人们对理解空间频率(SFs)在他人情绪感知中的作用越来越感兴趣。虽然一些研究表明对低频与高频空间频率存在优先处理,但识别基本面部表情的最佳空间频率仍然难以捉摸。这项针对西方参与者进行的研究,使用两种互补方法填补了这一空白:一种是数据驱动方法(实验1),没有任意的空间频率截止点;另一种是更自然主义的方法(实验2),模拟观察距离的变化。结果总体上显示低频空间频率比高频空间频率占主导地位,但特别强调面部表情分类大多依赖于中等范围的空间频率内容(即每张脸约6 - 13个周期),这在以前的研究中常常被忽视。在短至中等观察距离(1.2 - 2.4米)观察到最佳表现,随着距离增加急剧下降,恰恰是在中等范围空间频率不再可用时。此外,我们的数据表明,不同基本面部表情的空间频率调谐曲线存在差异,并且在面部表情处理中低频和中频空间频率有细微贡献。最重要的是,这表明任何去除中频空间频率内容的方法都存在缺陷,无法完整地说明空间频率对面部表情识别的诊断价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验