文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用HERGAST揭示超大尺寸空间转录组切片中的精细空间结构并增强基因表达信号。

Unveiling fine-scale spatial structures and amplifying gene expression signals in ultra-large ST slices with HERGAST.

作者信息

Gong Yuqiao, Yuan Xin, Jiao Qiong, Yu Zhangsheng

机构信息

Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

SJTU-Yale Joint Center for Biostatistics and Data Science Organization, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Nat Commun. 2025 Apr 28;16(1):3977. doi: 10.1038/s41467-025-59139-w.


DOI:10.1038/s41467-025-59139-w
PMID:40295488
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12037780/
Abstract

We propose HERGAST, a system for spatial structure identification and signal amplification in ultra-large-scale and ultra-high-resolution spatial transcriptomics data. To handle ultra-large spatial transcriptomics (ST) data, we consider the divide and conquer strategy and devise a Divide-Iterate-Conquer framework especially for spatial transcriptomics data analysis, which can also be adopted by other computational methods for extending to ultra-large-scale ST data analysis. To tackle the potential over-smoothing problem arising from data splitting, we construct a heterogeneous graph network to incorporate both local and global spatial relationships. In simulations, HERGAST consistently outperforms other methods across all settings with more than a 10% increase in average adjusted rand index (ARI). In real-world datasets, HERGAST's high-precision spatial clustering identifies SPP1+ macrophages intermingled within colorectal tumors, while the enhanced gene expression signals reveal unique spatial expression patterns of key genes in breast cancer.

摘要

我们提出了HERGAST,这是一种用于超大规模和超高分辨率空间转录组学数据中空间结构识别和信号放大的系统。为了处理超大规模的空间转录组学(ST)数据,我们考虑了分而治之策略,并设计了一种专门用于空间转录组学数据分析的分治迭代框架,其他计算方法也可以采用该框架来扩展到超大规模ST数据分析。为了解决数据分割可能产生的过度平滑问题,我们构建了一个异构图网络,以纳入局部和全局空间关系。在模拟中,HERGAST在所有设置下均始终优于其他方法,平均调整兰德指数(ARI)提高了10%以上。在真实世界数据集中,HERGAST的高精度空间聚类识别出结直肠癌中混杂的SPP1+巨噬细胞,而增强的基因表达信号揭示了乳腺癌中关键基因独特的空间表达模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/9fa9bfb4a44a/41467_2025_59139_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/154cefcd1d29/41467_2025_59139_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/ad3eef1bead2/41467_2025_59139_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/91822446f7a4/41467_2025_59139_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/09f489f54e5c/41467_2025_59139_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/9fa9bfb4a44a/41467_2025_59139_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/154cefcd1d29/41467_2025_59139_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/ad3eef1bead2/41467_2025_59139_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/91822446f7a4/41467_2025_59139_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/09f489f54e5c/41467_2025_59139_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849b/12037780/9fa9bfb4a44a/41467_2025_59139_Fig5_HTML.jpg

相似文献

[1]
Unveiling fine-scale spatial structures and amplifying gene expression signals in ultra-large ST slices with HERGAST.

Nat Commun. 2025-4-28

[2]
STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.

Comput Biol Med. 2023-11

[3]
Unveiling patterns in spatial transcriptomics data: a novel approach utilizing graph attention autoencoder and multiscale deep subspace clustering network.

Gigascience. 2025-1-6

[4]
HEARTSVG: a fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics.

Nat Commun. 2024-7-7

[5]
ST-CellSeg: Cell segmentation for imaging-based spatial transcriptomics using multi-scale manifold learning.

PLoS Comput Biol. 2024-6

[6]
DGSIST: Clustering spatial transcriptome data based on deep graph structure Infomax.

Methods. 2024-11

[7]
OmniClust: A versatile clustering toolkit for single-cell and spatial transcriptomics data.

Methods. 2025-6

[8]
MAEST: accurately spatial domain detection in spatial transcriptomics with graph masked autoencoder.

Brief Bioinform. 2025-3-4

[9]
STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform. 2024-11-22

[10]
HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.

BMC Genomics. 2024-6-5

本文引用的文献

[1]
xSiGra: explainable model for single-cell spatial data elucidation.

Brief Bioinform. 2024-7-25

[2]
HEARTSVG: a fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics.

Nat Commun. 2024-7-7

[3]
Unsupervised spatially embedded deep representation of spatial transcriptomics.

Genome Med. 2024-1-12

[4]
Profiling the heterogeneity of colorectal cancer consensus molecular subtypes using spatial transcriptomics.

NPJ Precis Oncol. 2024-1-10

[5]
High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis.

Nat Commun. 2023-12-19

[6]
SiGra: single-cell spatial elucidation through an image-augmented graph transformer.

Nat Commun. 2023-9-12

[7]
macrophage polarity identifies a network of cellular programs that control human cancers.

Science. 2023-8-4

[8]
An integrated cell atlas of the lung in health and disease.

Nat Med. 2023-6

[9]
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.

Nat Commun. 2023-3-1

[10]
Colorectal cancer statistics, 2023.

CA Cancer J Clin. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索