Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, 107 S Indiana Ave, Bloomington, IN 47405, United States.
Department of Computer and Information Technology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae388.
Recent advancements in spatial imaging technologies have revolutionized the acquisition of high-resolution multichannel images, gene expressions, and spatial locations at the single-cell level. Our study introduces xSiGra, an interpretable graph-based AI model, designed to elucidate interpretable features of identified spatial cell types, by harnessing multimodal features from spatial imaging technologies. By constructing a spatial cellular graph with immunohistology images and gene expression as node attributes, xSiGra employs hybrid graph transformer models to delineate spatial cell types. Additionally, xSiGra integrates a novel variant of gradient-weighted class activation mapping component to uncover interpretable features, including pivotal genes and cells for various cell types, thereby facilitating deeper biological insights from spatial data. Through rigorous benchmarking against existing methods, xSiGra demonstrates superior performance across diverse spatial imaging datasets. Application of xSiGra on a lung tumor slice unveils the importance score of cells, illustrating that cellular activity is not solely determined by itself but also impacted by neighboring cells. Moreover, leveraging the identified interpretable genes, xSiGra reveals endothelial cell subset interacting with tumor cells, indicating its heterogeneous underlying mechanisms within complex cellular interactions.
近年来,空间成像技术的进步彻底改变了在单细胞水平上获取高分辨率多通道图像、基因表达和空间位置的方式。我们的研究引入了 xSiGra,这是一种基于图的可解释人工智能模型,旨在通过利用空间成像技术的多模态特征,阐明已识别的空间细胞类型的可解释特征。xSiGra 通过构建具有免疫组织化学图像和基因表达作为节点属性的空间细胞图,利用混合图变换模型来描绘空间细胞类型。此外,xSiGra 集成了梯度加权类激活映射组件的新颖变体,以揭示可解释的特征,包括各种细胞类型的关键基因和细胞,从而从空间数据中获得更深入的生物学见解。通过与现有方法的严格基准测试,xSiGra 在各种空间成像数据集上表现出卓越的性能。在肺肿瘤切片上应用 xSiGra 揭示了细胞的重要性得分,表明细胞活性不仅取决于自身,还受到相邻细胞的影响。此外,利用已识别的可解释基因,xSiGra 揭示了与肿瘤细胞相互作用的内皮细胞亚群,表明其在复杂细胞相互作用中有不同的潜在机制。