Suppr超能文献

使用L2正则化更新增强相对湿度建模。

Enhancing relative humidity modelling using L2 regularization updates.

作者信息

Yahia Abdellah Ben, Kadir Iman, Abdallaoui Abdelaziz, El-Hmaidi Abdellah

机构信息

Laboratory of Analytical Chemistry and Electrochemistry, Faculty of Sciences, Processes and Environment Team, URL-CNRST N 13, Moulay Ismail University, Meknes, Morocco.

出版信息

Sci Rep. 2025 Apr 28;15(1):14796. doi: 10.1038/s41598-025-94356-9.

Abstract

This study explores L2 regularization to mitigate overfitting in artificial neural networks (ANNs), focusing on the regularization coefficient, Lambda, and its effect on data distribution and multi-layer perceptron (MLP) performance. Meteorological data from Tangier (1985-2022) with eight variables influencing relative humidity were analyzed using principal component analysis (PCA) and self-organizing maps (SOM). PCA identifies key correlations, such as between total precipitation and relative humidity or vapor pressure and temperature, but struggles with non-linear relationships. SOM complements PCA by highlighting data structure nuances and detect complex correlations. L2 regularization, particularly with Lambda = 0.01, effectively reduces data complexity and dispersion, preventing overfitting while enhancing prediction accuracy. Adjusting Lambda during training optimizes weight biases in Kohonen and MLP networks, improving model performance and enabling precise relative humidity prediction. This strategy demonstrates the value of combining PCA, SOM, and L2 regularization for meteorological modelling.

摘要

本研究探讨L2正则化以减轻人工神经网络(ANN)中的过拟合问题,重点关注正则化系数Lambda及其对数据分布和多层感知器(MLP)性能的影响。使用主成分分析(PCA)和自组织映射(SOM)对丹吉尔(1985 - 2022年)的气象数据进行了分析,该数据包含影响相对湿度的八个变量。PCA识别出关键的相关性,如总降水量与相对湿度之间或水汽压与温度之间的相关性,但在处理非线性关系时存在困难。SOM通过突出数据结构的细微差别并检测复杂的相关性来补充PCA。L2正则化,特别是当Lambda = 0.01时,有效地降低了数据的复杂性和离散度,防止了过拟合,同时提高了预测准确性。在训练过程中调整Lambda可优化Kohonen和MLP网络中的权重偏差,提高模型性能并实现精确的相对湿度预测。该策略证明了将PCA、SOM和L2正则化结合用于气象建模的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验