Suppr超能文献

贝叶斯技术在分析爱荷华赌博任务中群体差异的应用:直觉型和深思熟虑型决策者的案例研究。

Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers.

机构信息

Department of Psychology, University of Amsterdam, PO Box 15906, 1001 NK, Amsterdam, The Netherlands.

Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.

出版信息

Psychon Bull Rev. 2018 Jun;25(3):951-970. doi: 10.3758/s13423-017-1331-7.

Abstract

The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.

摘要

爱荷华赌博任务(IGT)是比较不同群体复杂决策的最流行的实验范例之一。最常见的是,使用频率论检验来比较群体间的表现,并比较为 IGT 开发的认知模型的推断参数,对 IGT 行为进行分析。在这里,我们提出了一种基于贝叶斯重复测量方差分析的替代方法,用于比较表现,以及一套三种互补的基于模型的方法,用于评估 IGT 表现背后的认知过程。这三种基于模型的方法涉及贝叶斯分层参数估计、贝叶斯因子模型比较和贝叶斯潜在混合建模。我们通过应用这些贝叶斯方法来说明,以测试直觉与深思熟虑的决策风格差异与 IGT 表现差异的关联程度。结果表明,直觉和深思熟虑的决策者在 IGT 上的表现相似,而建模分析一致表明,两组决策者都依赖于相似的认知过程。我们的结果挑战了直觉和深思熟虑的决策风格个体差异对决策有广泛影响的观点。它们还突出了贝叶斯方法的优势,尤其是它们能够量化支持零假设的证据的能力,以及它们允许基于模型的分析纳入分层和潜在混合结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b5/5990582/8f267d2d99c5/13423_2017_1331_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验