Xiao Zhenghui, Cai Haihua, Wang Yue, Cui Ruixue, Huo Li, Lee Elaine Yuen-Phin, Liang Ying, Li Xiaomeng, Hu Zhanli, Chen Long, Zhang Na
Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Southern University of Science and Technology, Shenzhen, China.
Quant Imaging Med Surg. 2023 Mar 1;13(3):1286-1299. doi: 10.21037/qims-22-760. Epub 2023 Feb 6.
Predicting the mutation status of the epidermal growth factor receptor (EGFR) gene based on an integrated positron emission tomography/computed tomography (PET/CT) image of non-small cell lung cancer (NSCLC) is a noninvasive, low-cost method which is valuable for targeted therapy. Although deep learning has been very successful in robotic vision, it is still challenging to predict gene mutations in PET/CT-derived studies because of the small amount of medical data and the different parameters of PET/CT devices.
We used the advanced EfficientNet-V2 model to predict the EGFR mutation based on fused PET/CT images. First, we extracted 3-dimensional (3D) pulmonary nodules from PET and CT as regions of interest (ROIs). We then fused each single PET and CT image. The network model was used to predict the mutation status of lung nodules by the new data after fusion, and the model was weighted adaptively. The EfficientNet-V2 model used multiple channels to represent nodules comprehensively.
We trained the EfficientNet-V2 model through our PET/CT fusion algorithm using a dataset of 150 patients. The prediction accuracy of EGFR and non-EGFR mutations was 86.25% in the training dataset, and the accuracy rate was 81.92% in the validation set.
Combined with experiments, the demonstrated PET/CT fusion algorithm outperformed radiomics methods in predicting EGFR and non-EGFR mutations in NSCLC.
基于非小细胞肺癌(NSCLC)的正电子发射断层扫描/计算机断层扫描(PET/CT)融合图像预测表皮生长因子受体(EGFR)基因的突变状态是一种无创、低成本的方法,对靶向治疗具有重要价值。尽管深度学习在机器人视觉方面非常成功,但由于医学数据量少以及PET/CT设备参数不同,在PET/CT衍生研究中预测基因突变仍然具有挑战性。
我们使用先进的EfficientNet-V2模型基于融合的PET/CT图像预测EGFR突变。首先,我们从PET和CT中提取三维(3D)肺结节作为感兴趣区域(ROIs)。然后我们融合每一幅单独的PET和CT图像。通过融合后的新数据,利用网络模型预测肺结节的突变状态,并对模型进行自适应加权。EfficientNet-V2模型使用多个通道全面表示结节。
我们使用150例患者的数据集,通过PET/CT融合算法训练了EfficientNet-V2模型。在训练数据集中,EGFR和非EGFR突变的预测准确率为86.25%,在验证集中准确率为81.92%。
结合实验,所展示的PET/CT融合算法在预测NSCLC中的EGFR和非EGFR突变方面优于放射组学方法。