Suppr超能文献

钆塞酸增强磁共振成像通过可解释机器学习识别胆管细胞型肝细胞癌:SHAP的个体应用

Gadoxetic acid-enhanced MRI for identifying cholangiocyte phenotype hepatocellular carcinoma by interpretable machine learning: individual application of SHAP.

作者信息

Liu Wei, Cai Zhiping, Chen Yifan, Guan Xingqun, Feng Jieying, Chen Haixiong, Guo Baoliang, OuYang Fusheng, Luo Chun, Zhang Rong, Chen Xinjie, Li Xiaohong, Zhou Cuiru, Yang Shaomin, Liu Ziwei, Hu Qiugen

机构信息

Department of Radiology, The Eighth Affiliated Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan, Guangdong Province, 528308, China.

Department of Radiology, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong Province, 528247, China.

出版信息

BMC Cancer. 2025 Apr 28;25(1):788. doi: 10.1186/s12885-025-14147-3.

Abstract

PURPOSE

Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and to implement individual applications via the Shapley Additive explanation (SHAP).

METHODS

We included 180 patients with histologically confirmed HCC from two institutions. Clinical and MRI imaging features were screened for predicting cholangiocyte phenotype hepatocellular carcinoma using Least Absolute Shrinkage and Selection Operator (LASSO) and the logistic regression analysis. Five machine learning models were constructed based on these features. A Kaplan-Meier survival analysis aims to compare prognostic differences between cholangiocyte phenotype-positive HCC groups and classical (cholangiocyte phenotype-negative) HCC groups, and was conducted to explore the prognostic information of the optimal model.

RESULTS

The most significant clinicoradiological features, including the platelet-to-lymphocyte ratio (PLR), tumor capsule, target sign on hepatobiliary phase (HBP), and T1 relaxation time of 20 min (T1rt-20 min), were selected to construct the prediction model. Finally, we selected the eXtreme Gradient Boosting (XGBoost) model as the optimal predictive model, which achieved AUCs of 0.835, 0.830, 0.816 and 0.776 in training, internal validation, external validation, and prospective validation cohorts, respectively, for visual analysis via SHAP, in which T1rt-20 min made a significant contribution. Survival analysis showed a statistically significant difference in relapse-free survival (RFS) between cholangiocyte phenotype-positive HCC groups and classical HCC groups from institution I (hazard ratio [HR] 1.994; 95% CI, 1.059-3.758; P = 0.027), and the construction XGBoost model can be used to stratify RFS according to prognosis (HR, 1.986; 95% CI, 1.061-3.717; P = 0.029).

CONCLUSION

The machine learning model utilizing T1 mapping gadoxetic acid-enhanced MRI demonstrates significant potential in identifying cholangiocyte phenotype HCC. Furthermore, personalized prediction is enhanced through the application of SHAP, providing valuable insights to support clinical decision-making processes.

摘要

目的

胆管细胞表型肝细胞癌(HCC)具有高度侵袭性。本研究旨在开发并验证一种基于钆塞酸增强磁共振成像(MRI)的T1映射来预测胆管细胞表型HCC的最佳机器学习模型,并通过夏普利值附加解释(SHAP)实现个体应用。

方法

我们纳入了来自两家机构的180例经组织学证实的HCC患者。使用最小绝对收缩和选择算子(LASSO)和逻辑回归分析筛选临床和MRI成像特征,以预测胆管细胞表型肝细胞癌。基于这些特征构建了五个机器学习模型。采用Kaplan-Meier生存分析比较胆管细胞表型阳性HCC组与经典(胆管细胞表型阴性)HCC组之间的预后差异,并进行分析以探索最佳模型的预后信息。

结果

选择了最显著的临床放射学特征,包括血小板与淋巴细胞比值(PLR)、肿瘤包膜、肝胆期(HBP)的靶征以及20分钟时的T1弛豫时间(T1rt-20分钟)来构建预测模型。最后,我们选择极端梯度提升(XGBoost)模型作为最佳预测模型,该模型在训练、内部验证、外部验证和前瞻性验证队列中的曲线下面积(AUC)分别为0.835、0.830、0.816和0.776,通过SHAP进行可视化分析,其中T1rt-20分钟做出了显著贡献。生存分析显示,机构I的胆管细胞表型阳性HCC组与经典HCC组之间的无复发生存期(RFS)存在统计学显著差异(风险比[HR]1.994;95%置信区间,1.059 - 3.758;P = 0.027),并且构建的XGBoost模型可用于根据预后对RFS进行分层(HR,1.986;95%置信区间,1.061 - 3.717;P = 0.029)。

结论

利用钆塞酸增强MRI的T1映射的机器学习模型在识别胆管细胞表型HCC方面显示出显著潜力。此外,通过应用SHAP增强了个性化预测,为支持临床决策过程提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2842/12036154/12ee7eb2c88c/12885_2025_14147_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验