Fernandez Salamanca Mar, Simões Rita, Deręgowska-Cylke Malgorzata, van Leeuwen Pim J, van der Poel Henk G, Bekers Elise, Guimaraes Marcos A S, van der Heide Uulke A, Schoots Ivo G
Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
MAGMA. 2025 Apr 29. doi: 10.1007/s10334-025-01251-5.
To differentiate cribriform (GP4Crib+) from non-cribriform growth and Gleason 3 patterns (GP4Crib-/GP3) using MRI.
Two hundred and ninety-one operated prostate cancer men with pre-treatment MRI and whole-mount prostate histology were retrospectively included. T2-weighted, apparent diffusion coefficient (ADC) and fractional blood volume maps from 1.5/3T MRI systems were used. 592 histological GP3, GP4Crib- and GP4Crib+ regions were segmented on whole-mount specimens and manually co-registered to MRI sequences/maps. Radiomics features were extracted, and an erosion process was applied to minimize the impact of delineation uncertainties. A logistic regression model was developed to differentiate GP4Crib+ from GP3/GP4Crib- in the 465 remaining regions. The differences in balanced accuracy between the model and baseline (where all regions are labeled as GP3/GP4Crib-) and 95% confidence intervals (CI) for all metrics were assessed using bootstrapping.
The logistic regression model, using the 90th percentile ADC feature with a negative coefficient, showed a balanced accuracy of 0.65 (95% CI: 0.48-0.79), receiver operating characteristic area under the curve (AUC) of 0.75 (95% CI: 0.54-0.92), a precision-recall AUC of 0.35 (95% CI: 0.14-0.68).
The radiomics MRI-based model, trained on Gleason sub-patterns segmented on whole-mount specimen, was able to differentiate GP4Crib+ from GP3/GP4Crib- patterns with moderate accuracy. The most dominant feature was the 90th percentile ADC. This exploratory study highlights 90th percentile ADC as a potential biomarker for cribriform growth differentiation, providing insights into future MRI-based risk assessment strategies.
利用磁共振成像(MRI)鉴别筛状生长(GP4Crib+)与非筛状生长及Gleason 3级模式(GP4Crib-/GP3)。
回顾性纳入291例接受手术的前列腺癌男性患者,这些患者均有治疗前MRI及前列腺全切片组织学检查结果。使用了来自1.5/3T MRI系统的T2加权成像、表观扩散系数(ADC)图和血容量分数图。在前列腺全切片标本上分割出592个组织学上的GP3、GP4Crib-和GP4Crib+区域,并手动将其与MRI序列/图进行配准。提取影像组学特征,并应用侵蚀过程以尽量减少轮廓勾画不确定性的影响。建立了一个逻辑回归模型,以在剩余的465个区域中鉴别GP4Crib+与GP3/GP4Crib-。使用自助法评估模型与基线(所有区域均标记为GP3/GP4Crib-)之间的平衡准确度差异以及所有指标的95%置信区间(CI)。
逻辑回归模型使用第90百分位数ADC特征且系数为负,其平衡准确度为0.65(95% CI:0.48 - 0.79),曲线下受试者操作特征面积(AUC)为0.75(95% CI:0.54 - 0.92),精确召回率AUC为0.35(95% CI:0.14 - 0.68)。
基于影像组学的MRI模型,在前列腺全切片标本上分割的Gleason亚模式上进行训练,能够以中等准确度鉴别GP4Crib+与GP3/GP4Crib-模式。最主要的特征是第90百分位数ADC。这项探索性研究突出了第90百分位数ADC作为筛状生长分化潜在生物标志物的作用,为未来基于MRI的风险评估策略提供了见解。