Suppr超能文献

超越Gleason分级:MRI影像组学用于区分前列腺癌患者筛状生长与非筛状生长

Beyond Gleason grading: MRI radiomics to differentiate cribriform growth from non-cribriform growth in prostate cancer men.

作者信息

Fernandez Salamanca Mar, Simões Rita, Deręgowska-Cylke Malgorzata, van Leeuwen Pim J, van der Poel Henk G, Bekers Elise, Guimaraes Marcos A S, van der Heide Uulke A, Schoots Ivo G

机构信息

Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.

Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

出版信息

MAGMA. 2025 Apr 29. doi: 10.1007/s10334-025-01251-5.

Abstract

OBJECTIVE

To differentiate cribriform (GP4Crib+) from non-cribriform growth and Gleason 3 patterns (GP4Crib-/GP3) using MRI.

METHODS

Two hundred and ninety-one operated prostate cancer men with pre-treatment MRI and whole-mount prostate histology were retrospectively included. T2-weighted, apparent diffusion coefficient (ADC) and fractional blood volume maps from 1.5/3T MRI systems were used. 592 histological GP3, GP4Crib- and GP4Crib+ regions were segmented on whole-mount specimens and manually co-registered to MRI sequences/maps. Radiomics features were extracted, and an erosion process was applied to minimize the impact of delineation uncertainties. A logistic regression model was developed to differentiate GP4Crib+ from GP3/GP4Crib- in the 465 remaining regions. The differences in balanced accuracy between the model and baseline (where all regions are labeled as GP3/GP4Crib-) and 95% confidence intervals (CI) for all metrics were assessed using bootstrapping.

RESULTS

The logistic regression model, using the 90th percentile ADC feature with a negative coefficient, showed a balanced accuracy of 0.65 (95% CI: 0.48-0.79), receiver operating characteristic area under the curve (AUC) of 0.75 (95% CI: 0.54-0.92), a precision-recall AUC of 0.35 (95% CI: 0.14-0.68).

CONCLUSION

The radiomics MRI-based model, trained on Gleason sub-patterns segmented on whole-mount specimen, was able to differentiate GP4Crib+ from GP3/GP4Crib- patterns with moderate accuracy. The most dominant feature was the 90th percentile ADC. This exploratory study highlights 90th percentile ADC as a potential biomarker for cribriform growth differentiation, providing insights into future MRI-based risk assessment strategies.

摘要

目的

利用磁共振成像(MRI)鉴别筛状生长(GP4Crib+)与非筛状生长及Gleason 3级模式(GP4Crib-/GP3)。

方法

回顾性纳入291例接受手术的前列腺癌男性患者,这些患者均有治疗前MRI及前列腺全切片组织学检查结果。使用了来自1.5/3T MRI系统的T2加权成像、表观扩散系数(ADC)图和血容量分数图。在前列腺全切片标本上分割出592个组织学上的GP3、GP4Crib-和GP4Crib+区域,并手动将其与MRI序列/图进行配准。提取影像组学特征,并应用侵蚀过程以尽量减少轮廓勾画不确定性的影响。建立了一个逻辑回归模型,以在剩余的465个区域中鉴别GP4Crib+与GP3/GP4Crib-。使用自助法评估模型与基线(所有区域均标记为GP3/GP4Crib-)之间的平衡准确度差异以及所有指标的95%置信区间(CI)。

结果

逻辑回归模型使用第90百分位数ADC特征且系数为负,其平衡准确度为0.65(95% CI:0.48 - 0.79),曲线下受试者操作特征面积(AUC)为0.75(95% CI:0.54 - 0.92),精确召回率AUC为0.35(95% CI:0.14 - 0.68)。

结论

基于影像组学的MRI模型,在前列腺全切片标本上分割的Gleason亚模式上进行训练,能够以中等准确度鉴别GP4Crib+与GP3/GP4Crib-模式。最主要的特征是第90百分位数ADC。这项探索性研究突出了第90百分位数ADC作为筛状生长分化潜在生物标志物的作用,为未来基于MRI的风险评估策略提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验