Rahman Mohammad M, Zamakhaeva Svetlana, Rush Jeffrey S, Chaton Catherine T, Kenner Cameron W, Hla Yin Mon, Tsui Ho-Ching Tiffany, Uversky Vladimir N, Winkler Malcolm E, Korotkov Konstantin V, Korotkova Natalia
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA.
Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.
Nat Commun. 2025 Apr 29;16(1):4011. doi: 10.1038/s41467-025-58692-8.
Proteins harboring intrinsically disordered regions (IDRs) lacking stable secondary or tertiary structures are abundant across the three domains of life. These regions have not been systematically studied in prokaryotes. Here, our genome-wide analysis identifies extracytoplasmic serine/threonine-rich IDRs in several biologically important membrane-associated proteins in streptococci. We demonstrate that these IDRs are glycosylated with glucose by glycosyltransferases GtrB and PgtC2 in Streptococcus pyogenes and Streptococcus pneumoniae, and with N-acetylgalactosamine by a Pgf-dependent mechanism in Streptococcus mutans. The absence of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans. We link this phenotype to the C-terminal IDR of the post-translocation chaperone PrsA. Our data reveal that O-linked glycosylation protects the IDR-containing proteins from proteolytic degradation and is critical for the biological function of PrsA in biofilm formation.
含有缺乏稳定二级或三级结构的内在无序区域(IDR)的蛋白质在生命的三个域中都很丰富。这些区域尚未在原核生物中进行系统研究。在这里,我们的全基因组分析在链球菌中几个生物学上重要的膜相关蛋白中鉴定出胞外富含丝氨酸/苏氨酸的IDR。我们证明,在化脓性链球菌和肺炎链球菌中,这些IDR被糖基转移酶GtrB和PgtC2用葡萄糖糖基化,而在变形链球菌中,通过Pgf依赖性机制被N-乙酰半乳糖胺糖基化。糖基化的缺失导致变形链球菌在乙醇胁迫条件下生物膜形成出现缺陷。我们将这种表型与易位后分子伴侣PrsA的C末端IDR联系起来。我们的数据表明,O-连接糖基化可保护含IDR的蛋白质免受蛋白水解降解,并且对于PrsA在生物膜形成中的生物学功能至关重要。