Wang Yan, Wang Jiahao, Zhao Yanhui, Sheng Xihui, Qi Xiaolong, Zhou Lei, Liu Jianfeng, Wang Chuduan, Wu Jianliang, Cao Yongchun, Xing Kai
State Key Laboratory of animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
College of Animal Science and Technology, Beijing University of Agricultural, Beijing, China.
Anim Biosci. 2025 Aug;38(8):1622-1632. doi: 10.5713/ab.24.0905. Epub 2025 Apr 28.
The content of intramuscular fat (IMF) is closely linked to meat quality, and the mechanism of IMF deposition is complex. Despite numerous transcriptomic studies on IMF, variations in sample sizes and data analysis methods have produced inconsistent gene expression patterns and results. To identify the pivotal genes influencing pig IMF content, we performed a meta-analysis on 10 pig muscle transcriptome datasets with a total of eighty samples, forty with high and forty with low IMF samples.
DESeq2 has been used to analyze the high and low IMF groups for 10 datasets each, resulting in the differentially expressed genes (DEGs) for each dataset. To identify key genes affecting IMF content, we performed a meta-analysis of the differential expression results from the 10 datasets using MetaVolcanoR. Subsequently, we conducted protein-protein interaction network analysis, Gene Ontology and Kyoto encyclopedia of genes and genomes functional enrichment analysis, and quantitative trait locus (QTL) analysis on the DEGs.
The meta-analysis identified 129 DEGs, comprising 71 upregulated and 58 downregulated DEGs in the high IMF group. The DEGs exhibited enrichment in processes associated with adipocyte differentiation and fat anabolism. QTL analysis demonstrated that five DEGs, including FASN and SCD, corresponded to six QTLs associated with IMF.
The findings suggest that meta-analysis effectively integrates data from multiple datasets, resulting in more reliable outcomes. This approach enabled the identification of the core gene cluster comprising FASN, SCD, and PLIN1, LEP, and G0S2, which influence IMF content in pigs.
肌内脂肪(IMF)含量与肉质密切相关,且IMF沉积机制复杂。尽管已有众多关于IMF的转录组学研究,但样本量和数据分析方法的差异导致基因表达模式和结果不一致。为了鉴定影响猪IMF含量的关键基因,我们对10个猪肌肉转录组数据集进行了荟萃分析,这些数据集共有80个样本,其中40个样本的IMF含量高,40个样本的IMF含量低。
使用DESeq2分别分析10个数据集中的高IMF组和低IMF组,得到每个数据集的差异表达基因(DEG)。为了鉴定影响IMF含量的关键基因,我们使用MetaVolcanoR对10个数据集的差异表达结果进行了荟萃分析。随后,我们对DEG进行了蛋白质-蛋白质相互作用网络分析、基因本体论和京都基因与基因组百科全书功能富集分析以及数量性状位点(QTL)分析。
荟萃分析鉴定出129个DEG,其中高IMF组中有71个上调DEG和58个下调DEG。这些DEG在与脂肪细胞分化和脂肪合成代谢相关的过程中表现出富集。QTL分析表明,包括FASN和SCD在内的5个DEG对应于6个与IMF相关的QTL。
研究结果表明,荟萃分析有效地整合了来自多个数据集的数据,产生了更可靠的结果。这种方法能够鉴定出由FASN、SCD、PLIN1、LEP和G0S2组成的核心基因簇,这些基因影响猪的IMF含量。