Suppr超能文献

一种用于CT图像配准的基于物理信息的深度神经网络。

A Physics-Informed Deep Neural Network for Harmonization of CT Images.

作者信息

Zarei Mojtaba, Sotoudeh-Paima Saman, McCabe Cindy, Abadi Ehsan, Samei Ehsan

出版信息

IEEE Trans Biomed Eng. 2024 Dec;71(12):3494-3504. doi: 10.1109/TBME.2024.3428399. Epub 2024 Nov 21.

Abstract

OBJECTIVE

Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs).

METHODS

An adversarial generative network was trained on virtual CT images acquired under various imaging conditions using a virtual imaging platform with 40 computational patient models. These models featured anthropomorphic lungs with different levels of pulmonary diseases, including nodules and emphysema. Imaging was conducted using a validated CT simulator at two dose levels and varying reconstruction kernels. The trained model was tested on an independent virtual test dataset and two clinical datasets.

RESULTS

On the virtual test set, the harmonizer improved the structural similarity index from 79.3 16.4% to 95.8 1.7%, normalized mean squared error from 16.7 9.7% to 9.2 1.7%, and peak signal-to-noise ratio from 27.7 3.7 dB to 32.2 1.6 dB. Moreover, the harmonized images yielded more precise quantification of emphysema-based imaging biomarkers for lung attenuation, LAA -950 from 5.6 8.7% to 0.23 0.16%, Perc 15 from 43.4 45.4 HU to 20.0 7.5 HU, and Lung Mass from 0.3 0.3 g to 0.1 0.2 g. In clinical data, the harmonizer reduced biomarker variability by an average of 70%. For lung nodules, harmonized images improved the detectability index by 6.5-fold and DNN-based precision by 6%.

CONCLUSION

The proposed harmonizer significantly enhances image quality and quantification accuracy in CT imaging.

SIGNIFICANCE

The study demonstrated the potential utility of image harmonization for consistent CT image quality and reliable quantification, which is crucial for clinical applications and patient management.

摘要

目的

计算机断层扫描(CT)定量受图像采集和再现变异性的影响。本文旨在通过利用基于物理的深度神经网络(DNN)使图像协调一致来减少这种变异性。

方法

使用具有40个计算患者模型的虚拟成像平台,在各种成像条件下获取的虚拟CT图像上训练一个对抗生成网络。这些模型具有不同程度肺部疾病的拟人化肺部,包括结节和肺气肿。使用经过验证的CT模拟器在两个剂量水平和不同的重建内核下进行成像。在独立的虚拟测试数据集和两个临床数据集上对训练好的模型进行测试。

结果

在虚拟测试集上,协调器将结构相似性指数从79.3±16.4%提高到95.8±1.7%,归一化均方误差从16.7±9.7%降低到9.2±1.7%,峰值信噪比从27.7±3.7 dB提高到32.2±1.6 dB。此外,协调后的图像对基于肺气肿的成像生物标志物进行了更精确的定量,肺衰减的LAA-950从5.6±8.7%降至0.23±0.16%,Perc15从43.4±45.4 HU降至20.0±7.5 HU,肺质量从0.3±0.3 g降至0.1±0.2 g。在临床数据中,协调器将生物标志物变异性平均降低了70%。对于肺结节,协调后的图像将可检测性指数提高了6.5倍,基于DNN的精度提高了6%。

结论

所提出的协调器显著提高了CT成像中的图像质量和定量准确性。

意义

该研究证明了图像协调对于一致的CT图像质量和可靠定量的潜在效用,这对于临床应用和患者管理至关重要。

相似文献

1
A Physics-Informed Deep Neural Network for Harmonization of CT Images.一种用于CT图像配准的基于物理信息的深度神经网络。
IEEE Trans Biomed Eng. 2024 Dec;71(12):3494-3504. doi: 10.1109/TBME.2024.3428399. Epub 2024 Nov 21.
2
Harmonizing CT Images via Physics-based Deep Neural Networks.通过基于物理的深度神经网络实现CT图像的协调
Proc SPIE Int Soc Opt Eng. 2023 Feb;12463. doi: 10.1117/12.2654215. Epub 2023 Apr 7.

本文引用的文献

1
Zero-Shot Medical Image Translation via Frequency-Guided Diffusion Models.基于频域引导扩散模型的零样本医学图像翻译。
IEEE Trans Med Imaging. 2024 Mar;43(3):980-993. doi: 10.1109/TMI.2023.3325703. Epub 2024 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验