Suppr超能文献

用于CT肺气肿纵向定量分析的虚拟成像试验框架的开发与应用

Development and Application of a Virtual Imaging Trial Framework for Longitudinal Quantification of Emphysema in CT.

作者信息

Sotoudeh-Paima Saman, Ho Fong Chi, Nejad Mobina Ghojogh, Kavuri Amar, O'Sullivan-Murphy Bryan, Lynch David A, Segars W Paul, Samei Ehsan, Abadi Ehsan

机构信息

Department of Radiology, Duke University School of Medicine, Durham, NC.

Department of Electrical and Computer Engineering, Duke University, Durham, NC.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12925. doi: 10.1117/12.3006925. Epub 2024 Apr 1.

Abstract

Pulmonary emphysema is a progressive lung disease that requires accurate evaluation for optimal management. This task, possible using quantitative CT, is particularly challenging as scanner and patient attributes change over time, negatively impacting the CT-derived quantitative measures. Efforts to minimize such variations have been limited by the absence of ground truth in clinical data, thus necessitating reliance on clinical surrogates, which may not have one-to-one correspondence to CT-based findings. This study aimed to develop the first suite of human models with emphysema at multiple time points, enabling longitudinal assessment of disease progression with access to ground truth. A total of 14 virtual subjects were modeled across three time points. Each human model was virtually imaged using a validated imaging simulator (DukeSim), modeling an energy-integrating CT scanner. The models were scanned at two dose levels and reconstructed with two reconstruction kernels, slice thicknesses, and pixel sizes. The developed longitudinal models were further utilized to demonstrate utility in algorithm testing and development. Two previously developed image processing algorithms (CT-HARMONICA, EmphysemaSeg) were evaluated. The results demonstrated the efficacy of both algorithms in improving the accuracy and precision of longitudinal quantifications, from 6.1±6.3% to 1.1±1.1% and 1.6±2.2% across years 0-5. Further investigation in EmphysemaSeg identified that baseline emphysema severity, defined as >5% emphysema at year 0, contributed to its reduced performance. This finding highlights the value of virtual imaging trials in enhancing the explainability of algorithms. Overall, the developed longitudinal human models enabled ground-truth based assessment of image processing algorithms for lung quantifications.

摘要

肺气肿是一种进行性肺部疾病,需要进行准确评估以实现最佳管理。这项任务可以通过定量CT来完成,但由于扫描仪和患者特征随时间变化,对基于CT的定量测量产生负面影响,因此极具挑战性。由于临床数据缺乏金标准,减少此类变化的努力受到限制,因此必须依赖临床替代指标,而这些指标可能与基于CT的发现不存在一一对应关系。本研究旨在开发第一套在多个时间点患有肺气肿的人体模型,以便在能够获取金标准的情况下对疾病进展进行纵向评估。总共在三个时间点对14个虚拟受试者进行了建模。每个人体模型使用经过验证的成像模拟器(DukeSim)进行虚拟成像,模拟能量积分CT扫描仪。模型在两种剂量水平下进行扫描,并使用两种重建核、切片厚度和像素大小进行重建。所开发的纵向模型进一步用于证明其在算法测试和开发中的实用性。对之前开发的两种图像处理算法(CT-HARMONICA、EmphysemaSeg)进行了评估。结果表明,这两种算法在提高纵向定量的准确性和精确性方面均有效,在0至5年期间,误差从6.1±6.3%降至1.1±1.1%和1.6±2.2%。对EmphysemaSeg的进一步研究发现,基线肺气肿严重程度(定义为第0年肺气肿>5%)导致其性能下降。这一发现凸显了虚拟成像试验在增强算法可解释性方面的价值。总体而言,所开发的纵向人体模型能够基于金标准对肺部定量的图像处理算法进行评估。

相似文献

1
Development and Application of a Virtual Imaging Trial Framework for Longitudinal Quantification of Emphysema in CT.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12925. doi: 10.1117/12.3006925. Epub 2024 Apr 1.
2
A systematic assessment and optimization of photon-counting CT for lung density quantifications.
Med Phys. 2024 Apr;51(4):2893-2904. doi: 10.1002/mp.16987. Epub 2024 Feb 18.
4
Development and Application of a Virtual Imaging Trial framework for Airway Quantifications via CT.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12463. doi: 10.1117/12.2654263. Epub 2023 Apr 7.
5
Task-based validation and application of a scanner-specific CT simulator using an anthropomorphic phantom.
Med Phys. 2022 Dec;49(12):7447-7457. doi: 10.1002/mp.15967. Epub 2022 Nov 12.
6
Development and Clinical Applications of a Virtual Imaging Framework for Optimizing Photon-counting CT.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612079. Epub 2022 Apr 4.
8
Harmonizing CT Images via Physics-based Deep Neural Networks.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12463. doi: 10.1117/12.2654215. Epub 2023 Apr 7.
9
Quantitative accuracy of lung function measurement using parametric response mapping: A virtual imaging study.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3006833. Epub 2024 Apr 3.
10
Scanner-specific validation of a CT simulator using a COPD-emulated anthropomorphic phantom.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2613212. Epub 2022 Apr 4.

引用本文的文献

1
Quantitative Accuracy of CT Protocols for Cross-sectional and Longitudinal Assessment of COPD: A Virtual Imaging Study.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13405. doi: 10.1117/12.3046945. Epub 2025 Apr 8.
2
The Role of Harmonization: A Systematic Analysis of Various Task-based Scenarios.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13405. doi: 10.1117/12.3047096. Epub 2025 Apr 8.

本文引用的文献

1
A systematic assessment and optimization of photon-counting CT for lung density quantifications.
Med Phys. 2024 Apr;51(4):2893-2904. doi: 10.1002/mp.16987. Epub 2024 Feb 18.
3
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.
Radiol Artif Intell. 2023 Jul 5;5(5):e230024. doi: 10.1148/ryai.230024. eCollection 2023 Sep.
6
Modeling "Textured" Bones in Virtual Human Phantoms.
IEEE Trans Radiat Plasma Med Sci. 2019 Jan;3(1):47-53. doi: 10.1109/TRPMS.2018.2828083. Epub 2018 Apr 19.
7
DukeSim: A Realistic, Rapid, and Scanner-Specific Simulation Framework in Computed Tomography.
IEEE Trans Med Imaging. 2019 Jun;38(6):1457-1465. doi: 10.1109/TMI.2018.2886530. Epub 2018 Dec 12.
8
Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans.
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):176-189. doi: 10.1109/TPAMI.2017.2782687. Epub 2017 Dec 12.
9
Modeling Lung Architecture in the XCAT Series of Phantoms: Physiologically Based Airways, Arteries and Veins.
IEEE Trans Med Imaging. 2018 Mar;37(3):693-702. doi: 10.1109/TMI.2017.2769640.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验