Suppr超能文献

变应性疾病和哮喘环境科学的 EAACI 指南——利用人工智能和机器学习开发暴露组学中的因果模型。

EAACI guidelines on environmental science in allergic diseases and asthma - Leveraging artificial intelligence and machine learning to develop a causality model in exposomics.

机构信息

National Heart and Lung Institute, Imperial College London, London, UK.

NIHR Imperial Biomedical Research Centre, London, UK.

出版信息

Allergy. 2023 Jul;78(7):1742-1757. doi: 10.1111/all.15667. Epub 2023 Feb 15.

Abstract

Allergic diseases and asthma are intrinsically linked to the environment we live in and to patterns of exposure. The integrated approach to understanding the effects of exposures on the immune system includes the ongoing collection of large-scale and complex data. This requires sophisticated methods to take full advantage of what this data can offer. Here we discuss the progress and further promise of applying artificial intelligence and machine-learning approaches to help unlock the power of complex environmental data sets toward providing causality models of exposure and intervention. We discuss a range of relevant machine-learning paradigms and models including the way such models are trained and validated together with examples of machine learning applied to allergic disease in the context of specific environmental exposures as well as attempts to tie these environmental data streams to the full representative exposome. We also discuss the promise of artificial intelligence in personalized medicine and the methodological approaches to healthcare with the final AI to improve public health.

摘要

过敏疾病和哮喘与我们生活的环境和暴露模式密切相关。了解暴露对免疫系统影响的综合方法包括不断收集大规模和复杂的数据。这需要复杂的方法来充分利用这些数据所能提供的信息。在这里,我们讨论了应用人工智能和机器学习方法的进展和进一步前景,以帮助揭示复杂环境数据集的力量,为暴露和干预提供因果模型。我们讨论了一系列相关的机器学习范例和模型,包括这些模型的训练和验证方式,以及将机器学习应用于特定环境暴露背景下的过敏疾病的示例,以及尝试将这些环境数据流与完整的代表性暴露组学联系起来。我们还讨论了人工智能在个性化医疗中的前景以及医疗保健的方法学方法,最终目的是改善公共健康。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验