Kabelac Anton, Eulig Elias, Maier Joscha, Hammermann Maximilian, Knaup Michael, Kachelrieß Marc
Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
Med Phys. 2025 Jul;52(7):e17910. doi: 10.1002/mp.17910. Epub 2025 Jun 4.
The reconstruction of a computed tomography (CT) image can be compromised by artifacts, which, in many cases, reduce the diagnostic value of the image. These artifacts often result from missing or corrupt regions in the projection data, for example, by truncation, metal, or limited angle acquisitions.
In this work, we introduce a novel deep learning-based framework, latent space reconstruction (LSR), which enables correction of various types of artifacts arising from missing or corrupted data.
First, we train a generative neural network on uncorrupted CT images. After training, we iteratively search for the point in the latent space of this network that best matches the compromised projection data we measured. Once an optimal point is found, forward-projection of the generated CT image can be used to inpaint the corrupted or incomplete regions of the measured raw data.
We used LSR to correct for truncation and metal artifacts. For the truncation artifact correction, images corrected by LSR show effective artifact suppression within the field of measurement (FOM), alongside a substantial high-quality extension of the FOM compared to other methods. For the metal artifact correction, images corrected by LSR demonstrate effective artifact reduction, providing a clearer view of the surrounding tissues and anatomical details.
The results indicate that LSR is effective in correcting metal and truncation artifacts. Furthermore, the versatility of LSR allows its application to various other types of artifacts resulting from missing or corrupt data.
计算机断层扫描(CT)图像的重建可能会受到伪影的影响,在许多情况下,这些伪影会降低图像的诊断价值。这些伪影通常源于投影数据中缺失或损坏的区域,例如截断、金属或有限角度采集。
在这项工作中,我们引入了一种基于深度学习的新型框架——潜在空间重建(LSR),它能够校正因数据缺失或损坏而产生的各种类型的伪影。
首先,我们在未损坏的CT图像上训练一个生成神经网络。训练后,我们在该网络的潜在空间中迭代搜索与我们测量的受损投影数据最匹配的点。一旦找到最佳点,生成的CT图像的前向投影可用于修复测量的原始数据中损坏或不完整的区域。
我们使用LSR校正截断和金属伪影。对于截断伪影校正,LSR校正的图像在测量区域(FOM)内显示出有效的伪影抑制,与其他方法相比,FOM有显著的高质量扩展。对于金属伪影校正,LSR校正的图像显示出有效的伪影减少,能更清晰地显示周围组织和解剖细节。
结果表明LSR在校正金属和截断伪影方面是有效的。此外,LSR的通用性使其能够应用于因数据缺失或损坏而产生的各种其他类型的伪影。