IEEE Trans Med Imaging. 2024 Oct;43(10):3521-3532. doi: 10.1109/TMI.2024.3416398. Epub 2024 Oct 28.
The presence of metal objects leads to corrupted CT projection measurements, resulting in metal artifacts in the reconstructed CT images. AI promises to offer improved solutions to estimate missing sinogram data for metal artifact reduction (MAR), as previously shown with convolutional neural networks (CNNs) and generative adversarial networks (GANs). Recently, denoising diffusion probabilistic models (DDPM) have shown great promise in image generation tasks, potentially outperforming GANs. In this study, a DDPM-based approach is proposed for inpainting of missing sinogram data for improved MAR. The proposed model is unconditionally trained, free from information on metal objects, which can potentially enhance its generalization capabilities across different types of metal implants compared to conditionally trained approaches. The performance of the proposed technique was evaluated and compared to the state-of-the-art normalized MAR (NMAR) approach as well as to CNN-based and GAN-based MAR approaches. The DDPM-based approach provided significantly higher SSIM and PSNR, as compared to NMAR (SSIM: p [Formula: see text]; PSNR: p [Formula: see text]), the CNN (SSIM: p [Formula: see text]; PSNR: p [Formula: see text]) and the GAN (SSIM: p [Formula: see text]; PSNR: p <0.05) methods. The DDPM-MAR technique was further evaluated based on clinically relevant image quality metrics on clinical CT images with virtually introduced metal objects and metal artifacts, demonstrating superior quality relative to the other three models. In general, the AI-based techniques showed improved MAR performance compared to the non-AI-based NMAR approach. The proposed methodology shows promise in enhancing the effectiveness of MAR, and therefore improving the diagnostic accuracy of CT.
金属物体的存在会导致 CT 投影测量值发生畸变,从而在重建的 CT 图像中产生金属伪影。人工智能有望提供改进的解决方案,用于估计金属伪影减少(MAR)中缺失的正弦图数据,如以前使用卷积神经网络(CNN)和生成对抗网络(GAN)所展示的那样。最近,去噪扩散概率模型(DDPM)在图像生成任务中表现出了巨大的潜力,可能优于 GAN。在这项研究中,提出了一种基于 DDPM 的方法,用于缺失正弦图数据的填充,以实现更好的 MAR。所提出的模型是无条件训练的,不依赖于金属物体的信息,与有条件训练的方法相比,这可能会增强其在不同类型金属植入物中的泛化能力。评估并比较了所提出的技术与最先进的归一化 MAR(NMAR)方法以及基于 CNN 和 GAN 的 MAR 方法的性能。与 NMAR(SSIM:p [Formula: see text];PSNR:p [Formula: see text])、CNN(SSIM:p [Formula: see text];PSNR:p [Formula: see text])和 GAN(SSIM:p [Formula: see text];PSNR:p <0.05)方法相比,基于 DDPM 的方法提供了更高的 SSIM 和 PSNR。还根据临床 CT 图像中虚拟引入金属物体和金属伪影的临床相关图像质量指标对 DDPM-MAR 技术进行了评估,与其他三个模型相比,该技术显示出了更高的质量。一般来说,基于人工智能的技术与非人工智能的 NMAR 方法相比,MAR 性能有所提高。所提出的方法学在增强 MAR 的有效性方面具有很大的潜力,从而提高 CT 的诊断准确性。