Baniamer Ayman Omar
Curriculum and Teaching Department, The World Islamic Sciences and Education University W.I.S.E, Amman, Jordan.
PLoS One. 2025 Apr 30;20(4):e0321344. doi: 10.1371/journal.pone.0321344. eCollection 2025.
Statistical models are essential tools in data analysis. However, missing data plays a pivotal role in impacting the assumptions and effectiveness of statistical models, especially when there is a significant amount of missing data. This study addresses one of the core assumptions supporting many statistical models, the assumption of unidimensionality. It examines the impact of missing data rates and imputation methods on fulfilling this assumption. The study employs three imputation methods: Corrected Item Mean, multiple imputation, and expectation maximization, assessing their performance across nineteen levels of missing data rates, and examining their impact on the assumption of unidimensionality using several indicators (Cronbach's alpha, corrected correlation coefficients, factor analysis (Eigenvalues ([Formula: see text], [Formula: see text], and [Formula: see text] cumulative variance, and communalities). The study concluded that all imputation methods used effectively provided data that maintained the unidimensionality assumption, regardless of missing data rates. Additionally, it was found that most of the unidimensionality indicators increased in value as missing data rates rose.
统计模型是数据分析中的重要工具。然而,缺失数据在影响统计模型的假设和有效性方面起着关键作用,尤其是当存在大量缺失数据时。本研究探讨了支持许多统计模型的核心假设之一,即单维性假设。它考察了缺失数据率和插补方法对满足这一假设的影响。该研究采用了三种插补方法:校正项目均值、多重插补和期望最大化,评估它们在19个缺失数据率水平上的表现,并使用几个指标(克朗巴哈系数、校正相关系数、因子分析(特征值([公式:见原文]、[公式:见原文]和[公式:见原文]累积方差以及共同度)来考察它们对单维性假设的影响。研究得出结论,无论缺失数据率如何,所使用的所有插补方法都有效地提供了维持单维性假设的数据。此外,还发现随着缺失数据率的上升,大多数单维性指标的值会增加。