Suppr超能文献

重叠. 分割识别算法的改进研究

Research on an Improved Segmentation Recognition Algorithm of Overlapping .

机构信息

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.

School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China.

出版信息

Sensors (Basel). 2022 May 23;22(10):3946. doi: 10.3390/s22103946.

Abstract

The accurate identification of overlapping in a factory environment is one of the challenges faced by automated picking. In order to better segment the complex adhesion between , this paper proposes a segmentation recognition algorithm for overlapping . This algorithm calculates the global gradient threshold and divides the image according to the image edge gradient feature to obtain the binary image. Then, the binary image is filtered and morphologically processed, and the contour of the overlapping area is obtained by edge detection in the Canny operator, the convex hull and concave area are extracted for polygon simplification, and the vertices are extracted using Harris corner detection to determine the segmentation point. After dividing the contour fragments by the dividing point, the branch definition algorithm is used to merge and group all the contours of the same . Finally, the least squares ellipse fitting algorithm and the minimum distance circle fitting algorithm are used to reconstruct the outline of , and the demand information of picking is obtained. The experimental results show that this method can effectively overcome the influence of uneven illumination during image acquisition and be more adaptive to complex planting environments. The recognition rate of in overlapping situations is more than 96%, and the average coordinate deviation rate of the algorithm is less than 1.59%.

摘要

在工厂环境中准确识别重叠 是自动化采摘面临的挑战之一。为了更好地分割重叠 之间的复杂粘连,本文提出了一种重叠 分割识别算法。该算法计算全局梯度阈值,并根据图像边缘梯度特征对图像进行分割,得到二值图像。然后,对二值图像进行滤波和形态学处理,通过 Canny 算子中的边缘检测得到重叠 区域的轮廓,提取凸包和凹区进行多边形简化,并使用 Harris 角点检测提取顶点以确定分割点。通过分割点对轮廓碎片进行划分后,使用分支定义算法合并和分组同一 的所有轮廓。最后,使用最小二乘椭圆拟合算法和最小距离圆拟合算法重建 的轮廓,并获取 采摘的需求信息。实验结果表明,该方法能够有效克服图像采集过程中光照不均匀的影响,更适应复杂的种植环境。重叠情况下 的识别率超过 96%,算法的平均坐标偏差率小于 1.59%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cc/9146322/cf6867376c40/sensors-22-03946-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验