Almas Shagufta, Wahid Fazli, Ali Sikandar, Alkhyyat Ahmed, Ullah Kamran, Khan Jawad, Lee Youngmoon
Department of Information Technology, The University of Haripur, Haripur, 22620, Pakistan.
Collage of Science and Engineering, School of Computing, University of Derby, Derby, DE22 3AW, UK.
Sci Rep. 2025 Jan 20;15(1):2554. doi: 10.1038/s41598-025-85752-2.
Diabetic retinopathy (DR) presents a significant concern among diabetic patients, often leading to vision impairment or blindness if left untreated. Traditional diagnosis methods are prone to human error, necessitating accurate alternatives. While various computer-aided systems have been developed to assist in DR detection, there remains a need for accurate and efficient methods to classify its stages. In this study, we propose a novel approach utilizing enhanced stacked auto-encoders for the detection and classification of DR stages. The classification is performed across one healthy (normal) stage and four DR stages: mild, moderate, severe, and proliferative. Unlike traditional CNN approaches, our method offers improved reliability by reducing time complexity, minimizing errors, and enhancing noise reduction. Leveraging a comprehensive dataset from KAGGLE containing 35,126 retinal fundus images representing one healthy (normal) stage and four DR stages, our proposed model demonstrates superior accuracy compared to existing deep learning algorithms. Data augmentation techniques address class imbalance, while SAEs facilitate accurate classification through layer-wise unsupervised pre-training and supervised fine-tuning. We evaluate our model's performance using rigorous quantitative measures, including accuracy, recall, precision, and F1-score, highlighting its effectiveness in early disease diagnosis and prevention of blindness. Experimental results across different training/testing ratios (50:50, 60:40, 70:30, and 75:25) showcase the model's robustness. The highest accuracy achieved during training was 93%, while testing accuracy reached 88% on a training/testing ratio of 75:25. Comparative analysis underscores the model's superiority over existing methods, positioning it as a promising tool for early-stage DR detection and blindness prevention.
糖尿病视网膜病变(DR)是糖尿病患者面临的一个重大问题,如果不加以治疗,常常会导致视力受损或失明。传统的诊断方法容易出现人为误差,因此需要准确的替代方法。虽然已经开发了各种计算机辅助系统来协助DR检测,但仍然需要准确有效的方法来对其阶段进行分类。在本研究中,我们提出了一种新颖的方法,利用增强型堆叠自动编码器来检测和分类DR阶段。分类是在一个健康(正常)阶段和四个DR阶段进行的:轻度、中度、重度和增殖性。与传统的卷积神经网络(CNN)方法不同,我们的方法通过降低时间复杂度、最小化误差和增强降噪能力,提高了可靠性。利用来自KAGGLE的一个包含35126张视网膜眼底图像的综合数据集,这些图像代表一个健康(正常)阶段和四个DR阶段,我们提出的模型与现有的深度学习算法相比,具有更高的准确性。数据增强技术解决了类别不平衡问题,而堆叠自动编码器通过逐层无监督预训练和监督微调促进了准确分类。我们使用严格的定量指标评估模型的性能,包括准确率、召回率、精确率和F1分数,突出了其在早期疾病诊断和预防失明方面的有效性。在不同训练/测试比例(50:50、60:40、70:30和75:25)下的实验结果展示了模型的稳健性。训练期间达到的最高准确率为93%,而在75:25的训练/测试比例下,测试准确率达到88%。对比分析强调了该模型相对于现有方法的优越性,使其成为早期DR检测和预防失明的一个有前途的工具。